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Abstract 

Failure detection for aircraft sensor and actuator/actuating-surface systems and flight 

control redistribution in response to failed actuators/surfaces is an important research area. With 

the advent of faster flight control computers with greater memory available, parallel adaptive 

estimators can now be used to determine sensor and flight control actuator/surface failures. Since 

most of the sensors are somewhat functionally redundant, when a sensor is lost, the information it 

would have provided could be estimated from other operational sensors using a Kalman Filter. If 

a flight control actuator or surface fails, then a system having access to all the other flight control 

actuators/surfaces can properly adjust the remaining control actuators/surfaces (i.e., employ 

control redistribution) in order to achieve the commanded maneuver. 

Research has been accomplished in this area using Multiple Model Adaptive Estimation 

(MMAE) to detect failures.  Flight Control Redistribution (CR) is then used to compensate 

automatically for a failed flight control actuator/surface assuming that there is enough control 

authority in the aircraft. The MMAE is used to detect and identify flight control failures and also 

to provide estimated sensor outputs in the event of a failed sensor.  Further research has been 

accomplished looking at single and multiple failures and MMAE with Filter Spawning (FS) to 

detect complete and partial failures. Flight control redistribution has also been researched. 

In the current research, the MMAE with Filter Spawning and Control Redistribution 

(MMAE/FS/CR) are used together to identify failures and apply appropriate corrections. This 

research effort explores the performance of the MMAE/FS/CR in different regions of the flight 

envelope using model and gain scheduling. 

The MMAE/FS/CR is able to detect complete and partial actuator/surface failures as well 

as complete sensor failures.  Once the actuator/surface failure is identified and the effectiveness is 

determined, proper control is applied in order to accomplish the desired pilot command. 

xviii 



Improvements in the algorithm are required in order to enhance the MMAE/FS/CR ability to 

detect failures while undergoing maneuvering flight. 

This research effort shows the ability of the MMAE/FS to detect failures while 

transitioning through the flight envelope and while performing pilot commanded maneuvers. 

This research also improved and demonstrated the CR ability to compensate for complete or 

partial actuator/surface failures. 
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Flight Control Failure Detection and Redistribution Using Multiple 
Model Adaptive Estimation With Filter Spawning 

Chapter 1 – Introduction 

1.1 Chapter Overview  

This thesis presents a flight control failure detection and control redistribution method 

using multiple model adaptive estimation [27,28] with filter spawning [11,12], combined with a 

flight control redistribution network [32,33] to respond appropriately to detected flight control 

actuator/actuating-surface failures. This thesis will show the capability of detecting complete and 

partial failures of flight control actuators/surfaces and aircraft sensors and the application of the 

proper control based on the commanded maneuver anywhere in the Variable In-flight Stability 

Test Aircraft (VISTA) F-16 flight envelope. This chapter presents the motivation behind this 

thesis and defines the problem.  A summary of assumptions made for this thesis effort is also 

presented in this chapter.  Finally, this chapter describes the general format of the remainder of 

the thesis document. 

1.2 Motivation  

The United States Air Force recognizes the requirement of a flight control system that is 

tolerant of failures in both flight control actuators/surfaces and sensors. The flight control system 

should be able to detect partial and complete failures in both the flight control actuators/surfaces 

and sensors. Upon discovery of a failed surface or sensor, the flight control system should adapt 

to the available operational surfaces and adjust the flight control commands accordingly to 

accomplish the commanded aircraft maneuver through unfailed actuators/surfaces.  This is 

especially important to Uninhabited Aerial Vehicles (UAV) in which there is no pilot aboard the 

aircraft to determine flight control problems and apply the appropriate corrections. This is also 

critical to pilot-operated vehicles since this failure detection and control system operates without 
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the need for pilot interaction and, when required, can minimize the pilot workload by 

automatically compensating for the failed actuator or sensor. 

Multiple Model Adaptive Estimation with Filter Spawning and Control Redistribution 

(MMAE/FS/CR) is chosen because of its capability to detect sensor and flight control failures 

rapidly and correctly, make estimations using all information available, and supply appropriate 

corrective control performance in the face of a partial or complete actuator/surface failure. The 

Filter Spawning (FS) algorithm introduces additional filters based on partial failure assumptions, 

once a specific actuator/surface has been identified as having suffered some level of failure, in 

order to identify the effectiveness of the partially failed actuator/surface. The FS portion of the 

MMAE/FS/CR has been shown to identify partial and complete actuator/surface failures, and 

single and dual failures correctly. By using the FS algorithm, the percentage of actuator/surface 

effectiveness is determined.  This knowledge can assist in the decision making process whether to 

increase the command signal gain to a surface or to redistribute the command signal. The 

knowledge of the failure source is supplied by the MMAE and FS supplies the percentage of 

effectiveness of the failed system. Control commands from the flight control system are then 

increased in gain or redistributed to the remaining operational actuators/surfaces in order to 

accomplish the commanded maneuver in any position in the flight envelope. The flight envelope 

is a region defined by dynamic pressure. The aircraft’s linearized equations of motion used in the 

MMAE/FS/CR are based on subsets of the flight envelope. As the aircraft changes airspeed or 

altitude, the dynamic pressure changes. A flight control failure detection and control system must 

operate properly over the entire flight envelope. This is typically done with flight control gains 

for specific regions of the flight envelope based on the aircraft’s location within the flight 

envelope. This method is called gain scheduling. Model scheduling is similar to gain scheduling 

except the parameters for the MMAE are used based on the aircraft’s location within the flight 

envelope. It has been shown that model scheduling is essential to demonstrate the MMAE/FS/CR 

performance completely [9,10]. If model scheduling is not used, after a few seconds of 
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maneuvering flight, all the models within the MMAE’s elemental filters become mismatched, 

incapacitating the MMAE’s adaptation. 

1.3Problem Statement 

A great deal of research into the detection and estimation of single and dual, partial and 

complete, flight control actuator/surface and complete sensor failures has been accomplished on 

the VISTA F-16 simulation [7,9-12,17,27,28,32,33]. Adequate detection performance has been 

achieved in the determination of partial and complete, single and dual failures at one point in the 

flight envelope. This research intends to demonstrate the capability of the MMAE/FS/CR to 

detect single, partial and complete, flight control actuator/surface and complete sensor failures in 

various regions of the flight envelope and with full vehicle maneuvering. 

1.4Assumptions 

The VISTA F-16 is used to provide the “real world” data for this research. The VISTA 

F-16 Simulation Rapid-prototyping Facility (SRF) is a six-degree-of-freedom simulation tool 

developed by Calspan and General Dynamics [11]. The VISTA F-16 simulation provides the 

“truth model”, and it is assumed that the outputs of the simulation are characteristic of the VISTA 

F-16 test aircraft. 

The flight control failure modes used in this research are “failure to free stream”, 

meaning a failed flight control surface does not contribute to the maneuvering of the aircraft. 

This failure mode is used in the “truth model” and the “design model” and is characteristic of 

flight control failures encountered in the “real world”. 

1.5Thesis Format 

This thesis is divided into six chapters. This first chapter provides an introduction and 

problem definition. Chapter two presents the history, theory, and modifications of MMAE/CR 
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with filter spawning for online implementation. Chapter three presents the “truth model” and the 

construction of the “design model”. Chapter four presents MMAE/FS as it is used for this 

research. Chapter four also presents the design for a MMAC controller and the CR algorithm. 

Chapter five presents the performance of the MMAE/FS/CR given single, partial and complete, 

flight control actuator/surface failures and complete sensor failures at different regions of the 

flight envelope and different degrees of maneuvering.  Chapter six reviews the initial problem 

and interprets the results based on the research, yielding conclusions and recommendations for 

further research 
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Chapter 2 – Concept Development 

2.1 Chapter Overview 

In this chapter, the Multiple Model Adaptive Estimation using Filter Spawning and 

Control Redistribution (MMAE/FS/CR) concepts are covered in detail. This chapter is broken 

into two sections; the first deals with the MMAE with Filter Spawning (MMAE/FS) and the 

second deals with the CR. Each section provides an overview of the history, the theory, and 

practical implementation. This layout presents the material so that the reader may clearly 

understand the ideas and theory while also understanding the historical buildup of the theory and 

implementation. 

2.2 Multiple Model Adaptive Estimation and Control History 

2.2.1 Early Contributions 

The MMAE was first introduced in 1965 by Magill [20]. Magill proposed the use of 

several elemental filters based on different hypotheses of ‘real world’ characteristics. The 

estimates of each elemental filter are weighted and summed together based on the conditional 

probability assigned to each elemental filter to form a blended estimate. The elemental 

conditional probability is the probability that a certain elemental filter is correct, conditioned on 

the observed measurements. Lainiotis first presented the concept of Multiple Model Adaptive 

Control (MMAC) in 1973 [15]. This algorithm is similar to the MMAE except elemental 

controllers are cascaded with the elemental filters. The elemental control commands are then 

weighted by the conditional probabilities and then summed together to form blended control 

commands. These ideas only existed in theory at this time because they required extensive 

computing power to carry out the parallel operations of the elemental filters and controllers. The 

MMAE and MMAC also suffered from algorithm problems that drove the conditional probability 
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of certain elemental filters to zero, making the MMAE/MMAC insensitive to later environmental 

changes. 

In 1978, Chang and Athans [6] researched the optimality of the MMAE. They found the 

MMAE is only optimal if the ‘real world’ parameter space exactly matched the parameter space 

of the elemental filters. Since this condition requires an infinite amount of elemental filters, the 

MMAE is suboptimal for estimation. Baram [2, 3, 4] showed that, for discretized spaces, the 

MMAE would converge (under specific assumptions) to the one discrete parameter value that is 

closest to the true parameter value in the “Baram distance measure” sense. Tugnait [35] also 

showed the suboptimal performance of the MMAE with Markov-1 processes.  Fry and Sage [13] 

investigated the used of a hierarchical structure in order to reduce the computational loading of 

the MMAE. 

2.2.2 Early Implementation 

In 1977, Athans et al. [1] presented the first practical application of MMAC with aircraft. 

The MMAE/MMAC is used to determine the flight condition of a fly-by-wire F-8C aircraft. Two 

algorithm enhancements with the MMAC were identified in this research effort. The first is the 

application of a probability lower bound. In the MMAC, some of the elemental conditional 

probabilities went to zero, making the MMAC insensitive to later changes involving those 

particular elemental filters. A probability lower bound was applied that causes the conditional 

probability to be a non-zero number at all times, thereby precluding this “lockout” phenomenon. 

The second enhancement used in this research is using a weighted average, or Bayesian method, 

to form the control signal for the MMAC. This is used instead of selecting the single elemental 

controller with the highest conditional probability and ignoring the rest of the control signals 

(Maximum A Posteriori, or MAP, method). Two problems with the MMAE were found in this 

research. The first problem is Beta Dominance and the second is the requirement of a dither 

signal, both of which will be explained in detail later in this chapter. This research showed the 
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implementation of MMAE and MMAC, but the aircraft selected for this research was inherently 

stable. This makes the advanced control not noteworthy and the flight control system did not 

allow the full implementation of the MMAE/MMAC. 

2.2.3 AFIT Contributions 

The Air Force Institute of Technology (AFIT) has made several advancements in the 

implementation of MMAE and MMAC for the detection of flight control failures and control of 

aircraft with failures. The use of the MMAE algorithm has been explored by AFIT in order to 

detect sensor and flight control actuator/surface failures on current fighter aircraft.  The MMAE 

has been implemented on digital simulations of the Short-field Take-Off and Landing (STOL) F-

15 test aircraft [24,26,31,34], unmanned aerial vehicles [14,16], and the VISTA F-16 [7,9-12, 

17,27,28,32,33]. The research started with the detection of single full failures and currently 

includes exploration into detection of single and dual sensor failures and partial and complete 

flight control actuator/surface failures. 

In 1985, Maybeck and Suizu first explored the Beta Dominance problem with the MMAE 

(for a different application).  Beta Dominance can cause false declarations, as will be explained 

later in the thesis. Through their research, it was found that removing the Beta term increases the 

reliability of the MMAE by reducing the amount of false declarations on sensor failures without 

negatively affecting the MMAE estimates. 

Maybeck and Hentz also explored the moving filter bank concept at AFIT in 1987 [25]. 

The use of a hierarchical structure was also explored [11,12]. 

AFIT made several contributions to flight control failure detection using the 

MMAE/MMAC. Pogoda conducted the first implementation of MMAC to detect sensor and 

flight control failures on the STOL F-15 in 1988 [24,31]. In 1989, Stevens [26,34] used the 

MMAC with and without the Beta term removed to detect complete sensor and flight control 

actuator failures on the STOL F-15. He combined the elemental filter estimates using the 
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Bayesian method. Stevens also investigated scalar residual monitoring and in 1993, Menke [27, 

28] continued this research using the VISTA F-16 using MMAE-based control rather than the 

previously explored MMAC control. Menke also used the full flight control system of the 

VISTA F-16 as compared to previous research conducted with only the longitudinal channel of 

the STOL F-15. Menke used the Dryden wind model researched by Pogoda for the F-16 VISTA 

aircraft in a low dynamic pressure (0.4 Mach and 20,000 feet) environment. This environment 

was chosen because sensor and flight control failures are hardest to detect in this region of the 

flight envelope. Many types of sensor failures were tested by Menke, such as loss of signal, 

increased noise, and bias. From this research effort, it was found that a dither signal is required in 

order to detect some failures unambiguously in the absence of pilot commands. 

Eide [9,10] first implemented the MMAE on the six-degree-of-freedom VISTA F-16 SRF 

simulation in 1994. The SRF is a simulation that includes the nonlinear dynamics of the 

longitudinal and lateral/directional channels. The simulation includes the complete F-16 Block 

40 Flight Control System (FCS) which includes the aileron-rudder interconnect. The simulation 

tool also includes the capability to observe sensor data and flight control actuator commands and 

also allows the direct command of the flight control actuators. This is essential for detecting 

failures and applying appropriate control. Eide discovered that a MMAE equipped with models 

based on one location within the flight envelope are valid for only a small neighborhood about 

that point in the flight envelope, before all elemental filters look wrong, incapacitating the 

adaptation mechanism of the MMAE. This drives the requirement for model scheduling based on 

the dynamic pressure for any investigation of substantial aircraft maneuvering, as is the intent of 

this research. 

Stepaniak [32,33] attempted to apply the first MMAC controller to the SRF VISTA F-16 

in 1995. Stepaniak explored the use of Linear Quadratic Gaussian (LQG) synthesis in order to 

design the elemental controllers within the MMAC. The design intention was to replicate the 

Block 40 flight control system used by the VISTA F-16 via LQG CGI/PI (Command Generator 

8




Tracking with Proportional plus Integral) synthesis. The resulting weighting matrices would have 

then been used to design the LQG elemental controllers to handle the conditions of a failed sensor 

or actuator/surface.  He found that the Block 40 FCS could not be adequately reproduced using 

LQG synthesis methods. Stepaniak then designed a single controller that redistributes the Block 

40 flight control system actuator control commands to the appropriate unfailed actuators based on 

the estimates and failure status provided by the MMAE. This method is called Control 

Redistribution (CR). He refined the required dither signal and also completely demonstrated the 

MMAE’s capability to detect and compensate for complete failures of any sensor or flight control 

actuator/surface. 

In 1996, Lewis [17] researched the use of a redistributed dither signal upon declaration of 

a failed flight control actuator/surface. He also demonstrated the MMAE’s capability of detecting 

single and dual complete failures of any sensor or flight control actuator/surface combinations. 

Clark [7] researched the detection of partial failures in 1997. He blended the estimates of 

elemental filters based on the hypothesis of a fully functional aircraft and a completely failed 

flight control actuator in order to handle partially failed actuators. The inability of this approach 

to identify properly the percentage of effectiveness of partially failed filters motivated the idea of 

the FS algorithm. 

Fisher [11, 12] developed the concept of filter spawning in 1999. This method uses an 

initial set of elemental filters to detect a sensor or flight control actuator/surface failure (assigning 

only “fully functional aircraft” and “fully failed sensor or actuator” hypotheses). Once an 

actuator/surface failure is detected, several more elemental filters are brought online or spawned. 

Each of the spawned filter models is based on different assumed values of flight control actuator 

effectiveness percentage. By using this approach, Fisher demonstrated the MMAE’s capability to 

detect single failures and also determine the effectiveness of a partially failed flight control 

actuator/surface. The current research seeks to combine the performance of the MMAE with 

filter spawning as developed by Fisher, with the CR developed by Stepaniak.  The current 
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research then seeks to prove the effectiveness of this combination in various locations within the 

flight envelope of the VISTA F-16. Different levels of maneuvering are also examined in this 

research, using model and gain scheduling to handle the effects of maneuver commands causing 

the aircraft to transverse a path of points through the flight envelope. 

2.3 MMAE Theory 

The MMAE is a structure made of several Kalman filters operating in parallel used to 

provide an estimate given a substantially varying ‘real world’: a ‘real world’ described by 

parameter values or hypothesized conditions that can vary over a range of possible values. The 

structure of the MMAE is discussed in Section 2.3.1. The Kalman filter provides an optimal state 

estimate based on the ‘real world’ inputs and measurements, and the Kalman filter’s internal 

model, and this is discussed in detail in Section 2.3.2. The conditional probability generator 

computes the relative probability of the correctness of each elemental filter at the current time, 

conditioned on the measurements observed from the ‘real world’. The conditional probability 

generator is discussed in Section 2.3.3. Section 2.3.4 shows that the MMAE is guaranteed to 

converge onto one of the hypotheses under certain conditions, and Section 2.3.5 discusses the 

formulation of the state estimate from the MMAE. The hierarchical structure used for handling 

multiple failures without impractical computational burden is shown in Section 2.3.6, and filter 

spawning for addressing partial actuator/surface failures is explained in detail in Section 2.3.7. 

2.3.1 Multiple Hypothesis Models 

The MMAE is based upon multiple hypothesis models. MMAE is effective in a ‘real 

world’ that has changing parameters. If only one filter is used in this case, the Kalman filter state 

estimates would contain large errors since the linearized model is valid for one set of parameters. 

The MMAE uses several Kalman filters in parallel, each with a model corresponding to a 

different ‘real world’ hypothesis. When the conditions of the ‘real world’ change, such as a flight 
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control actuator/surface failure, the fully functional aircraft hypothesis becomes invalid, while the 

appropriate hypothesis postulating the flight control actuator/surface failure becomes correct. 

The part of the MMAE that makes the determination of relative model adequacy is the 

conditional probability generator. By examining the residuals of each of the elemental filters and 

the expected covariance of the residual vector, the probability that an elemental filter is currently 

correct can be determined. The conditional probability is used as a multiplication factor for each 

elemental filter estimate and then the weighted estimates are summed together to form one 

MMAE estimate in a Bayesian (conditional mean estimation) approach. Alternatively, a 

Maximum A Priori (MAP) approach (computing a conditional mode instead) can be applied to 

the MMAE by using only the estimate from the elemental filter with the highest computed 

conditional probability. The individual components of the MMAE are described in detail in the 

following sections. The structure of the MMAE using the Bayesian approach is shown in 

Figure 1. 

Figure 1: MMAE Structure [22] 
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2.3.2 Kalman Filter 

The Kalman filter is an optimal recursive state estimator for a dynamic system adequately 

represented as a linear system driven by white Gaussian noises. The Kalman filter has two 

stages. The first stage is the propagate stage. This is where a mathematical model is used in the 

Kalman filter to compute a predicted state estimate. The predicted state error covariance is then 

calculated based on the covariance of the previous state estimate (right after the most recent 

measurement) and the assumed characteristics of the dynamics driving noise in the model. The 

second stage of the Kalman filter is the update stage. The Kalman gain is calculated using the 

predicted state estimate error covariance and the measurement noise covariance. The Kalman 

gain is used to weigh the incoming measurement and the predicted state estimate, to form an 

optimal updated state estimate. The Kalman gain is then used to update the error covariance of 

the filter state estimate as well. 

The model used in the Kalman filter is linear. The discrete-time form of the filter design 

model is [22] 

x(ti+1) = Φ(ti+1,ti) x(ti) + Bd(ti) u(ti) + Gd(ti) wd(ti)  (2.1) 

z(ti) = H(ti) x(ti) + v(ti)  (2.2) 

where Φ(ti+1,ti) is the discrete-time linear model state transition matrix used to propagate the 

state estimate, x(ti), from one sample time to the next. Bd(ti) is the control matrix that relates the 

input control vector, u(ti), to the state vector. Gd(ti) is the matrix that relates the dynamic driving 

noise, wd(ti), to the state vector. H(ti) is the discrete-time matrix that relates the state vector to the 

measurement vector, z(ti), and v(ti) is the measurement corruption noise. The statistics of the 

white Gaussian noises are 

E[wd(ti)] = 0 E[wd(ti)wd 
T(tj)] = Qdδij 

E[v (ti)] = 0 E[v(ti)vT(tj)] = Rδij (2.3) 
E[wd(ti)vT(tj)] = 0 
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The algorithm used for the propagation of the Kalman filter forward in time is 

^ (ti+1
–) = Φ(ti+1,ti)xx ^ (ti 

+) + Bd(ti)u(ti)  (2.4) 

P(ti+1
–) = Φ(ti+1,ti)P(ti 

+)Φ T(ti+1,ti) + Gd(ti)Qd(ti)Gd
T(ti)  (2.5) 

and the algorithm used for the measurement update of the Kalman filter is 

A(ti) = H(ti)P(ti 
–)H(ti)T + R(ti)  (2.6) 

K(ti) = P(ti 
-)H(ti)TA-1(ti) (2.7) 

r(ti) = zi - H(ti)x ^ (ti 
–)  (2.8) 

^ (ti 
+) = xx ^ (ti 

–) + K(ti) r(ti)  (2.9) 

P(ti 
+) = P(ti 

–) - K(ti)H(ti)P(ti 
–) (2.10) 

The superscripts – and + indicate the value before and after the time the measurement is taken, 

respectively.  The Kalman filter gain K(ti) is calculated using the previous covariance matrix 

P(ti
-) the measurement matrix H(ti) and the measurement noise covariance matrix R(ti). The r(ti) 

is the residual vector and is the difference between the measurement at the current time and the 

predicted measurement using the measurement matrix and the predicted state vector x ^ (ti 
–). The 

Kalman filter gain is then used to update the state estimate and the state error covariance. 

The residual vector is zero-mean and well described by the precomputed residual 

covariance A(ti), as long as the linear model used in the Kalman filter is valid. If the ‘real world’ 

differs substantially from the linear model used in the Kalman filter, a bias or increased 

magnitude will appear in the residuals and the residual values will be larger than anticipated by 

the precomputed residual variance.  Another way to describe this is, if the value of 

[r(ti)T A(ti)-1 r(ti)] is approximately equal to the number of measurements, then the hypothesis of 

the linear model is correct. If this value is much greater than the number of measurements, then 

the hypothesis model is incorrect. 

The Kalman filter provides an optimal state estimate x ^ (ti 
+), and a filter-computed state 

covariance P(ti 
+) given a measurement history up through time ti. The Kalman filter also provides 
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a residual vector and a filter-computed residual covariance which are required to use the MMAE 

algorithm. 

2.3.3 Conditional Probability Generator 

The conditional probability generator determines the conditional probability of each 

elemental filter’s estimates being correct. Each elemental Kalman filter provides a residual 

vector, rk(ti), and a residual covariance vector, Ak(ti), where the k subscript corresponds to kth 

elemental Kalman filter. Residual monitoring is inherent in the algorithm: real-time residuals are 

used to determine the correct hypothesis. 

The conditional probability that the kth elemental filter matches the ‘real world’, 

conditioned on the measurement history, Zi, is shown as 

pk(ti) = prob{a=ak | Z(ti)=Zi}  (2.11) 

The conditional probability computation has been shown to be computable as [22] 

fz(ti)|a,Z(ti-1)(zi | ak, Zi-1) · pk(ti-1) 
__________________________________________pk(ti) = (2.12) 

K 
∑ fz(ti)|a,Z(ti-1)(zi | aj, Zi-1) · pj(ti-1) 
j=1 

where the numerator is the density function of the measurement conditioned on the assumed 

parameter value or elemental filter being correct and on the entire observed measurement history, 

multiplied by the previously computed conditional probability for the elemental filter. The 

denominator is a scaling factor used to make the conditional probabilities for all of the elemental 

filters sum to one; it is simply the sum of all possible numerator terms. The density function 

above is defined as 

1
fz(ti)|a,Z(ti-1)(zi | ak, Zi-1) = (2π)m/2 |Ak(ti)|1/2  exp{·} (2.13) 

{·} = {–½rk 
T(ti)Ak 

-1(ti)rk(ti)} 
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where the ‘beta term’ is 

1
βk(ti) = (2π)m/2 |Ak(ti)|1/2  (2.14) 

and the likelihood quotient is 

Lk(ti) = rk 
T(ti)Ak 

-1(ti)rk(ti)  (2.15) 

By using the equations shown above, the conditional density of the elemental filter k can 

be determined at time ti by using the previous elemental conditional density and the rk(ti) and 

Ak(ti) calculated by the elemental Kalman filter.  If the ‘real world’ parameters closely resemble 

those of a certain elemental filter, then the residuals will be zero-mean and the covariance of the 

residuals will closely resemble the calculated residual covariance. In this case, the likelihood 

quotient will approach the dimension of the measurement vector, z(ti). As the elemental filter 

becomes mismatched with the ‘real world’, the residuals will no longer be zero-mean and the 

covariance of the residuals will be substantially larger than the computed residual covariance. 

The likelihood quotient also shows this variation by becoming larger than the value of the 

dimension of the measurement vector. 

2.3.4 MMAE Convergence 

The convergence of the MMAE to the correct filter has been researched [2-4]. The 

MMAE has been shown always to converge to the correct filter assuming an elemental filter 

exactly matches the ‘real world’ [2-4]. In the case in which the ‘real world’ does not exactly 

match any of the elemental filter hypotheses, the hypothesis that most closely matches the ‘real 

world’ characteristics in a Baram distance sense will have the highest conditional probability [2-

4]. These proofs can guarantee the convergence of the MMAE to a hypothesis but they cannot 

guarantee the speed at which the MMAE will converge to the hypothesis. It has been shown in 

previous research [11, 12] that, in the case of aircraft actuator/surface and sensor failure 

detection, the MMAE converges in a reasonable time (on the order of seconds or less). 
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2.3.5 MMAE State Estimate 

There are two methods by which a state estimate can be made by the MMAE. The first 

method is the Bayesian method and the second is the Maximum A Posteriori (MAP) method. 

The Bayesian method uses the condition probability computed by the MMAE to weight the 

elemental state estimates from the elemental Kalman filters. The weighted estimates are then 

summed together, or blended, to form one estimate (a conditional mean estimate) that contains 

information from each of the elemental filters. The MAP method uses only the elemental state 

estimate of the hypothesis with the highest conditional probability (a conditional mode estimate). 

The other elemental state estimates are disregarded and the MMAE output only contains the 

information from the single elemental Kalman filter. 

The MAP method can be useful when the MMAE is used in a large parameter space. The 

MAP method eliminates the estimates that contain large errors due to mismatched filters by only 

using the estimates from the filter that closely matches the ‘real world’. The Bayesian method is 

useful for a parameter space in which the elemental filter models are similar or contain similar 

information. One particularly useful application is to attempt to handle partial actuator/surface 

failures by blending the estimates of a filter based on the hypothesis of a fully functional aircraft 

with the estimates of a filter that assumes a fully failed actuator/surface. This allows a coarser 

discretization of the parameter space than does the MAP form of the MMAE. A mismatched 

filter can still contribute to the estimate and decrease the MMAE accuracy. In this research, the 

state estimates will be blended together using the Bayesian method. 

2.3.6 Hierarchical Structure 

The MMAE is based on a hypothesized set of system parameter vector values. In the 

case of detecting aircraft failures, the system parameter vector values are a representation of the 

failure status condition of the aircraft. If only single failures are considered, only 12 elemental 
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filters would be required (one fully functional aircraft filter, five fully failed flight control 

actuator/surface filters and six total sensor failure filters): 

A = {a1, a2, … , aK} = {a1, a2, …, a12} 

If it is desired to estimate single and dual failures, then 67 filters would be required to run in 

parallel in order to detect all possible combinations of failures. Each filter would have to be 

propagated and updated and the conditional probability for each filter would have to be calculated 

in order to produce a state estimate from the MMAE. This can become computationally very 

burdensome. 

In order to solve this computation problem, the failure sets can be broken up into a 

hierarchical set of banks. Initially, only 12 filters will be computed online for the detection of a 

single failure. 

A0 = {a0, a1, … , aK} 

Once a failure is detected, a second bank of filters is brought online, one of: 

A1 = {a0, a1, a12, … , a1K} 

A2 = {a0, a2, a21, … , a2K} 

AK = {a0, aK, aK1, … , aK,K-1} 

The second bank of filters is based on the first failure, once it is declared with assurance, and this 

second bank is used to detect a second failure. This reduces the computational burden by only 

requiring a maximum of 12 filters running in parallel. The 12 filters are the original 11 failure 

detection filters but each with the additional assumption of the first failure already having been 

declared, and the 12th filter allows the algorithm to reverse back to a fully functional aircraft, a0, if 

a false failure declaration had actually occurred. The hierarchical structure is shown in Figure 2 

on the next page. The hierarchical structure as presented here is used for the detection of single 

and dual failures without the requirement running a large number of filters in parallel based on 

every possible failure combination. 
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Figure 2: Hierarchical Structure [11] 
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2.3.7 Filter Spawning 

Filter Spawning (FS) is a method used to determine the percent of effectiveness (i.e., 

100% minus the percentage of failure) of a failed flight control actuator/surface. It has been 

shown [11,12] to provide adequate estimations of the flight controls actuator/surface effectiveness 

once a failure is declared by the MMAE. Once a specific flight control actuator/surface failure is 

declared, several online filters are spawned. Each filter is based on a specific effectiveness of that 

particular flight control actuator/surface. By observing the elemental probabilities in the spawned 

filters and the fully failed filter, a blended estimate of the effectiveness for a failed flight control 

actuator/surface is determined. This algorithm can be used in conjunction with the hierarchical 

structure since the hierarchical structure is used to detect failures in individual sensor and flight 

control actuators/surfaces and the filter spawning algorithm is used to evaluate the effectiveness 

of a single flight control actuator/surface once a failure declaration is made. 

2.4 MMAE in Practice  

2.4.1 Probability Lower Bounds 

One problem encountered with the original design of the MMAE is the MMAE’s 

convergence to one hypothesis and the condition of all the conditional probabilities of the other 

hypotheses going to zero over time. Since the previous elemental conditional probability is used 

to compute the current elemental condition probability (Equation (2.12)), once the elemental 

conditional probability equals zero, it will remain zero for all time thereafter. This locks the 

MMAE onto a single hypothesis even though the ‘real world’ may be changing. It has been 

found that setting a lower limit to the elemental conditional probabilities solves this problem [1, 

22]. The probability lower bound ensures that an elemental conditional probability will always 

be greater than zero. 

Setting the probability lower bound is also challenging.  Setting the probability lower 

bound too low will cause the MMAE to react slowly to changes in the ‘real world’, while a high 
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probability lower bound can cause the MMAE state estimate to contain a heavily weighted 

estimate from a mismatched elemental filter, thereby corrupting the MMAE output. 

When the Bayesian blending method is used to create estimates, the incorrect estimate 

from a mismatched filter is still combined with the estimate from the matched filter. This can 

result in substantial estimate errors from the MMAE. An alternative approach has been used to 

solve this problem.  This approach is the modified Bayesian method. In this method, the 

elemental conditional probabilities are examined, and when a conditional probability is equal to 

(or very close to) the probability lower bound, that estimate is removed from the estimation 

blending used to determine the state estimate and estimate of effectiveness. This means that only 

the filter estimates with a relatively high conditional probability will be allowed to blend to form 

the MMAE estimate, without the corrupt estimates from mismatched filters. This allows useful 

blending but precludes corruption of the state estimates solely because of imposing the artificial 

lower bound. 

2.4.2 Beta Dominance 

There has been much research in the area of Beta dominance [1,26-28,34]. Beta 

dominance is the condition in which the conditional probabilities are incorrectly calculated due to 

the Beta term in the previous equations (Equation (2.14)) when the likelihood quotients (Equation 

(2.15)) of all (or many) elemental filters are essentially the same. An example of this is that 

failed sensor hypotheses yield low computed residual covariances, which in turn yields to a 

tendency to declare false alarms on sensors because the associated likelihood quotient 

[rk 
T(ti)Ak 

-1(ti)rk(ti)] can readily become large due to small Ak values. One solution to this problem 

is the complete removal of the Beta term from the conditional probability equations [11,12]. By 

taking this step, Equation (2.13) no longer yields a proper Gaussian density function since the 

area under the function no longer equals to unity. This is not a great concern since the 
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denominator in Equation (2.12) scales the conditional probability so the summation of all 

conditional probabilities will always equal one. 

2.4.3 Dither Signal 

A dither signal is required in order to detect some failures unambiguously in the absence 

of pilot commands. A low magnitude (subliminal) control signal must be introduced into the 

flight control actuators in order to excite the aircraft sufficiently to detect failures properly while 

not exciting it so much as to be objectionable to the pilot. Without the dither signal, there does 

not exist enough observability to detect and disambiguate certain failure modes. For example, if 

the rudder fails on an aircraft and the pilot is flying straight and level, the failed rudder will only 

be noticed the first time the pilot requires the rudder. A dither signal would be used to excite the 

rudder and the rudder failure would be noticed well before the pilot applied a control input. This 

allows the MMAE to detect the failures and the controller to apply corrective control in lieu of 

pilot commands. 

Various types of dither signals have been introduced [9,10] but only the sinusoidal dither 

signal provides the best performance with respect to failure detection. The frequency of the 

sinusoidal dither signal is known and is used to determine failures. Once a surface has failed, the 

sinusoidal dither signal contributed by that particular surface will not appear. This lack of signal 

is detected by the residuals of the various elemental filters and the residuals of the elemental filter 

that correctly hypothesizes the actual failure will look substantially different from the residuals of 

all the other elemental filters. The MMAE algorithm is then more capable of determining flight 

control actuator/surface failures. Different dither frequencies can also be used for each flight 

control surface and by detecting the frequencies through the aircraft sensors, any failed flight 

control actuator can be determined since its frequency will not be detected by the sensors. 

The use of a dither signal must be well planned since the pilot will detect any additional 

movement in the flight control surfaces. The use of too large of a dither signal disturbs the pilot 
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and a dither signal too small results in missed failure declarations. The dither is only required in 

the absence of pilot command inputs. Other methods can be used instead of a constant dither 

signal, such as using a (pilot-commanded) short-term, large magnitude maneuver during times of 

steady flight. The pilot-commanded maneuver does not have the subliminal requirement as does 

the dither signal. This means the pilot-commanded maneuver can be a large enough magnitude to 

allow the MMAE/FS to provide better detection performance compared to the subliminal dither 

signal. The dither signal used in this research is a sinusoidal dither with a frequency of 15 Hz and 

+/- 0.1 g’s in the longitudinal channel and +/- 0.2 g’s in the lateral channel. These dither 

parameters have been used in previous research efforts and are not truly subliminal to a pilot, but 

have been found tolerable to pilots in research conducted in the 1960’s. 

2.4.4 Model Scheduling 

This research presents the application of model scheduling based on the dynamic 

pressure. Dynamic pressure is the distribution of force exerted on a control surface by the 

airflow, and this is dependent on the airspeed of the aircraft and the air density, which changes 

with altitude. Previous research efforts have explored the operation of the MMAE/FS and CR at 

only one dynamic pressure point (Mach 0.4 and 20,000 feet). The parameters of the linear 

models used in the elemental filters are dependent on the dynamic pressure. In order to allow the 

aircraft to change airspeed and altitude and still maintain detection and estimation performance 

by the MMAE/FS, stability derivatives and other parameters in the elemental linear filters used in 

the MMAE/FS are evaluated as a function of dynamic pressure (airspeed and altitude). This is 

called ‘model scheduling’ and is applied to the MMAE/FS algorithm in this research effort to 

allow the aircraft to transition the flight envelope (an area comprised of all dynamic pressures 

where the aircraft is able to fly) due to purposeful pilot commanded maneuvers. 
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2.5 Control Redistribution in Theory 

Two forms of adaptive control are shown in this chapter. The first adaptive controller 

discussed is the Multiple Model Adaptive Controller (MMAC). This controller is discussed in 

Section 2.5.1. The MMAC is made up of parallel controllers, and the LQG synthesis of these 

controllers is shown in Section 2.5.2. Finally, an alternative approach called Control 

Redistribution (CR) is discussed in Section 2.5.3. 

2.5.1 MMAC Description 

The MMAC is built on an MMAE foundation. In a MMAC, there is an elemental 

controller for each hypothesis (assumed parameter value) of the MMAE. Each elemental 

controller uses the state estimates formed by the corresponding elemental filter to produce a 

control signal based on the assumed hypothesis of the ‘real world’. The control signals are then 

blended together using the conditional probabilities as weighting factors. The MMAE filters are 

the same as described earlier in this chapter and the operation of the conditional probability 

generator is also the same as in the MMAE. The structure of the MMAC is shown in Figure 3. 

Figure 3: MMAC Structure [23] 
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2.5.2 LQG Synthesis 

The MMAC controllers are designed using the Linear Quadratic Gaussian (LQG) 

synthesis. This method allows the designer to build a controller and adjust the performance of the 

controller by adjusting the quadratic cost function in the controller design. The general cost 

function is shown in Equation (2.16) [23]: 

 N 
J = E∑ 

1 [xT (ti )X(ti )x(ti ) + uT (ti )U(ti )u(ti )]+ 1 xT (tN +1 )X f x(tN +1 ) (2.16) 
 i=0 2 2  

The quadratic cost function penalizes the controller for applying too much control and for not 

following the reference input signal closely enough through the U(ti) and X(ti) weighting 

matrices. Typically, in flight control problems, the final term representing the cost for not getting 

to a particular final state, Xf, is dropped, and N →∞ to allow for steady-state constant-gain 

controller design. For example, the cost function can be based on the amount of control applied 

and the ability of the controller to use the surfaces to perform a given command. By adjusting the 

cost function, the controller can be designed to perform a command perfectly at the cost of 

infinite flight control actuator commands at one extreme. The other extreme is zero use of flight 

control actuators and not performing the commanded task. The cost function is adjusted such that 

appropriate flight control actuator commands are given in order to perform a specific flight 

maneuver. 

The original design intention for Stepaniak [32,33] was to use the LQG synthesis of a 

CGT/PI controller to replicate the Block 40 flight control system. The associated weighting 

matrices were then used to perform the synthesis of controllers for each of the failed actuator 

conditions. It has been found that a controller designed using LQG synthesis cannot adequately 

model the F-16 Flight Control System (FCS). This can possibly be attributed to the classical 

design approach taken to design the actual F-16 FCS. Alternative methods had to be explored in 

order to provide proper control of the F-16 (specifically MMAE-based control with CR) while 

using the MMAE to detect failures. 
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2.5.3 Control Redistribution 

Control Redistribution (CR) is the process of applying commands to unfailed actuators/ 

surfaces in order to compensate for a failed actuator. In this case, the MMAE/FS algorithm 

provides the failure declaration and an estimation of actuator effectiveness in the case of partial 

actuator failures. The MMAE creates a state estimate and also decides which hypothesis 

represents the ‘real world’ failure status characteristics.  The CR controller uses this knowledge to 

redistribute the control authority to the unfailed control actuators in order to accomplish the 

desired maneuver. The mathematical formulation of the CR algorithm is presented in detail in 

Section 4.5.3. 

2.5.4 Gain Scheduling 

Gain Scheduling is the dependence of the flight control surface commands from the flight 

control system on the dynamic pressure (combination of airspeed and altitude). As the dynamic 

pressure changes, the control system must compensate by increasing or decreasing the commands 

to the flight control surface.  In this research effort, the aircraft will be transitioning the flight 

envelope due to purposeful pilot commanded maneuvers. Since the CR algorithm is used, the 

Block 40 Flight Control System (FCS) is used. The Block 40 FCS already incorporates gain 

scheduling to control the aircraft. 

2.6 Chapter Summary 

This chapter provided the basic background for MMAE/FS and for CR. The 

developmental history of the MMAE was covered first.  The paths that have led to the current 

MMAE implementation have also been reviewed. The advantages of the MMAE to create state 

estimates as well as detect failures and the addition of FS allowing the MMAE to produce 

estimates of failure effectiveness has been presented in this chapter. Finally, the control aspect 

has also been briefly presented in this chapter. 
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Chapter 3: Truth and Design Model 

3.1 Chapter Overview 

This chapter presents the derivation of the truth and design models used in this research 

effort. Section 3.2 discusses the ‘real world’ and introduces the VISTA F-16 aircraft. The ‘truth 

model’ used in this research effort is the VISTA F-16 SRF simulation tool and is described in 

Section 3.3. The derivation of the ‘design model’ is shown in Section 3.4, as well as the 

modifications to the ‘design model’ in order to allow for realistic actuator responses. Finally, the 

failure modes are described in Section 3.5. 

3.2 Real World 

The Variable In-flight Stability Testbed Aircraft (VISTA) F-16 aircraft is a flight control 

test aircraft used to provide in-flight simulations of high performance aircraft [11].  The VISTA 

F-16 is a modified F-16D aircraft with a Block 40 flight control system. The modification allows 

the VISTA F-16 to simulate the responses of various high performance aircraft. This is 

accomplished by changing the aircraft’s flight control laws in order to achieve the characteristics 

of the aircraft under test. The advantage of the VISTA F-16 aircraft is the flexibility of the 

control system which provides a useful tool in the development and evaluation of flight control 

systems. 

The VISTA F-16 aircraft was chosen for this research effort in order to continue the 

research efforts already accomplished at the Air Force Institute of Technology (AFIT) [7,9-12, 

17,27,28,32,33]. The original reason behind the decision to use this aircraft was the availability 

of advanced computer simulation tools at the Air Vehicles Directorate, Air Force Research 

Laboratory, Wright-Patterson Air Force Base, OH. 
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3.3 Truth Model 

The ‘truth model’ used in this research effort is the VISTA F-16 Simulation Rapid

prototyping Facility (SRF) simulation tool. The SRF is a FORTRAN-based, nonlinear six-

degree-of-freedom, computer simulation of the VISTA F-16 aircraft [11]. Calpsan and General 

Dynamics developed this simulation tool. The simulation program contains the Block 40 flight 

control system used by the VISTA F-16 aircraft and the flight control actuator dynamics. The 

Block 40 FCS has saturation (and anti-windup) compensation and the flight control actuator 

dynamics use 4th order actuator models. The simulation also includes the aileron-to-rudder 

interconnect used for coordinated turns, and allows for direct access of the aircraft sensors and the 

flight control actuators, which is a requirement for this research effort. 

There have been many modifications made to the VISTA F-16 SRF simulation tool 

through the history of this research topic [7,9-12,17,27,28,32,33]. The zero-order Dryden wind 

model was added to the simulation in order to improve the accuracy of the simulation [9,10, 

24,31]. Sensor noise was also incorporated into the simulation as well as a more realistic model 

of the lateral acceleration sensor [32,33]. The Multiple Model Adaptive Estimator with Filter 

Spawning (MMAE/FS) was added to the simulation to provide the capability of detecting 

complete actuator/surface and sensor failures and evaluating the effectiveness of partial 

actuator/surface failures [11,12]. Control redistribution (CR) was added to the output of the flight 

control portion of the VISTA F-16 SRF in order to accomplish appropriate control once an 

actuator failure is identified [32,33]. 

3.4 Design Model 

The ‘truth model’ is a high order model that accurately depicts the ‘real world’. The 

‘design model’ is a lower order model that is used to model the ‘truth model’ to a reasonable level 

of fidelity, and it is used in the MMAE/FS/CR algorithm.  The order of the ‘design model’ is 

dictated by the computational limit of the flight control computer. In this case, the flight control 
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computer operates at 64 Hz. The ‘design model’ must be of low enough order such that the 

resulting flight control system with the MMAE/FS/CR algorithm must operate within the 64 Hz 

limitation. The ‘design model’ must also accurately represent the ‘real world’, which sets a lower 

bound on order and complexity of the ‘design model’. The ‘truth model’ does not have the 

computational limitation that the ‘design model’ has, since the ‘truth model’ does not have to be 

implemented on the aircraft’s 64 Hz flight control computer. The ‘truth model’ is used as a basis 

or starting point of the reduced order ‘design model’ and also as a verification tool to evaluate the 

operation of the adaptive control system based upon the ‘design model’. 

3.4.1 Linearized VISTA F-16 

The ‘design model’ is created by the linearization of the nonlinear, continuous-time 

model used by the ‘truth model’ about a nominal point in the flight envelope. The flight envelope 

is the region of aircraft operation defined by airspeed, measured in Mach number, and altitude, 

measured in feet above mean sea level (MSL). Previous research efforts have studied the 

response of MMAE/FS/CR at one point within the flight envelope (Mach 0.4 and 20,000 ft) [7, 

9-12,15,24,25,29,30]. This condition was chosen because of the difficulty in detecting sensor and 

flight control failures due to the low dynamic pressure: the previous research focused on detection 

and estimation, and so it was prudent to test against conditions under which the detection and 

estimation would be the most difficult. The aircraft is in the ‘up-and-away’ flight configuration, 

meaning the leading edge flaps and landing gear are in the up position. In the current research, 

various points within the flight envelope are tested using model and gain scheduling.  The 

simulation begins at one point within the flight envelope and through the application of pilot 

commands, the aircraft transitions the flight envelope. This maneuver is used to test the detection 

and estimation capability of the MMAE/FS using ‘model scheduling’ while transitioning the 

flight envelope as well as testing the Block 40 ‘gain scheduling’ and CR algorithms. It has been 

shown in previous research that as the aircraft moves away from the nominal point (even over a 
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few seconds of maneuvering flight), all failure mode models appear bad if they are not all altered 

as a function of dynamic pressure, thereby incapacitating the MMAE’s detection [9,10]. Thus, 

gain and model scheduling, as a function of dynamic pressure (or altitude and Mach number), is a 

vital component of the operation of the MMAE/FS/CR for maneuvering aircraft vehicles. As the 

dynamic pressure changes as a result of altitude or airspeed changes, the filter models in the 

MMAE/FS/CR are changed to adapt to the new dynamic pressure. This is known as model 

scheduling. As the dynamic pressure changes, the Block 40 flight control gains are also changed 

in order to adapt to the new dynamic pressure. This type control action is known as gain 

scheduling and is already incorporated in to the standard Block 40 FCS. This research 

completely demonstrates the operational performance of the MMAE/FS/CR in various regions of 

the flight envelope using gain and model scheduling. 

3.4.2 State Space Design Parameters 

Once the aircraft’s nonlinear equations of motion have been linearized about a nominal 

point in the flight envelope, the linear, time-invariant (LTI) ‘design model’ is formatted as 

� (t) = Ax (t) + Bu (t) + Gw (t)  (3.1) 

where x(t) is the state vector, A is the plant matrix based on the LTI model, B is the control input 

matrix, u(t) is the control input, G is the noise injection matrix, and w(t) is the zero-mean white 

dynamics driving noise. Previous research has shown the development of these matrices and 

vectors [11,12]. The following chapters will briefly detail their development as they are used in 

this research effort. 
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3.4.2.1 State Vector 

The state vector, x(t), used for this research is shown below 

θ(t) 
u(t) 
α(t) 
  

x(t) = 
q(t) (3.2)
φ(t) 
  
β(t) 
p(t)

 
 r(t)  

where the state variables are defined as 

θ(t) Pitch Angle (rad) 
u(t) Forward Velocity (ft/sec) 
α(t) Angle of Attack (rad) 
q(t) Pitch Rate (rad/sec) 
φ(t) Bank Angle (rad) 
β(t) Sideslip Angle (rad) 
p(t) Roll Rate (rad/sec) 
r(t) Yaw Rate (rad/sec) 

The first four state variables (θ, u, α, q) describe the longitudinal motion of the aircraft while the 

last four state variables (φ, β, p, r) describe the lateral motion of the aircraft. 

3.4.2.2 Plant Matrix 

The plant matrix, A, used for this research effort is 

 0 0 0 1 0 0 0 0 



 Xθ ' X u ' Xα ' X q ' 0 0 0 0 




 Zθ ' Zu ' Zα ' Z q ' 0 0 0 0 



Mθ ' M u ' Mα ' M q ' 0 0 0 0 

 (3.3)

A = 

 0 0 0 0 0 0 1 φ '  r
  
 0 0 0 0 Yφ ' Yβ ' Yp ' Yr '  
 0 0 0 0 0 Lβ ' Lp ' Lr '


 0 0 0 0 0 N β ' N p ' Nr ' 
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The plant matrix contains elements for both the longitudinal and lateral dynamics of the aircraft. 

The derivatives shown in the upper left of the plant matrix are the longitudinal derivatives, and 

the lateral derivatives are shown in the lower right portion of the plant matrix. It is seen from the 

plant matrix that the lateral and longitudinal channel state dynamics are independent. The X′, Y′ 

and Z′ variables represent the aerodynamic forces in the x, y, and z directions, whereas the L′, M′, 

and N′ variables represent the aerodynamic moments in the x, y, and z directions. The coordinate 

frame of the aircraft is set up with the positive x-axis direction coming out of the nose, the y-axis 

coming out the right wing, and the z-axis coming out the bottom of the aircraft. The origin of the 

coordinate frame is established in the early design of the aircraft and does not represent the center 

of gravity of the aircraft. The center of gravity changes with the payload of the aircraft. The 

variables are in terms of the angle-of-attack (α) and sideslip (β) angles, hence the primed notation 

(′) according to standard convention [5]. The variables use the shorthand notation 

Xθ ′ = ∂X′/∂θ  (3.4) 

The variable Xθ ′ is read, “the partial derivative of the aerodynamic force in the x-axis direction 

with respect to the pitch angle.” This variable is also read as, “the change in the aerodynamic 

force in the x-axis direction due to a change in the pitch angle.” 

3.4.2.3 Input Vector 

The input vector, u(t), used in this research effort is 

δe (t) 
δdt (t)


 

u(t) = δ f (t) (3.5)
  
δa (t) 
δr (t) 
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where the input variables are defined as 

δe(t) Elevator Position (rad) 
δdt(t) Differential Tail Position (rad) 
δf(t) Flap Position (rad) 
δa(t) Aileron Position (rad) 
δr(t) Rudder Position (rad) 

3.4.2.4 Input Matrix 

The input matrix, B, used in this research is shown in Equation (3.6) on the next page. 

 0 0 0 0 0 

 ′ ′

 X δ e 

0 X δ f 
0 0 



 ′ ′

 

Z δ e 
0 Z δ f 

0 0 



′ ′
B = 


 
M δ e 

0 M δ f 
0 0 

 
(3.6) 

 0 0 0 0 0  
′ 0 Yδ dt 

0 Yδ a 

′ Yδ r 

′ 
 

′ ′ ′  0 Lδ dt 
0 Lδ a

Lδ r 

 ′ ′ ′  0 N δ dt 

0 N δ a
N δ r  

where, as before, the aerodynamic forces in the x, y, and z axes are represented by X′, Y′ and Z′, 

respectively, and the moments about the x, y, and z axes are represented by L′, M′, and N′, 

respectively.  The purpose of the primed notation (′) is the same as mentioned in the plant matrix 

Section 3.4.2.2. 

3.4.1.5 Noise Injection Matrix 

The noise injection matrix, G, used in this research is 

 0 0 0 0 0 0  
 X ′ ′ ′

 u X α X q 0 0 0 



′ ′ ′ 


 
Z u Z α Z q 0 0 0 


′ ′ ′ 
G = 


 

M u M α M q 0 0 0 
 

(3.7) 

 0 0 0 0 0 0 ′ ′ ′  0 0 0 Y p Y β Y r 

 ′ ′ ′  0 0 0 L p L β L r  

 ′ ′ ′  
 0 0 0 N p N β N r  
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3.4.1.6 Dynamics Driving Noise 

The dynamics driving noise is added to the system through the Gw(t) term from the state 

space equation, Equation (3.1). The dynamic driving noise is zero-mean, white Gaussian noise. 

The strength of the noise is given by the Q matrix. The dynamic driving noise strength used in 

this research is 

4.5×10−2 0 0 0 0 0  
 
 0 3.0×10−6 1.1×10−8 0 0 0 

 

 0 1.1×10−8 1.5×10−6 0 0 0  
Q=

 0 0 0 6.0×10−6 0 0 
 (3.8) 

 0 0 0 0 3.0×10−6 6.3×10−9  
  
 0 0 0 0 6.3×10−9 2.4×10−6 

 

The diagonal noise strengths are associated with the u, α, q, p, β, and r states, respectively.  It is 

seen from the Q matrix that the α and q states are correlated with each other, and the β and r 

states are also correlated with each other. All other state noises are uncorrelated with each other. 

The units of the Q matrix are shown in Table (1) [11,12]: 

Q States Units 
Q(1,1) u ft²/sec 
Q(2,2) α rad²·sec 
Q(2,3) α vs. q rad² 
Q(3,3) q rad²/sec 
Q(4,4) p rad²/sec 
Q(5,5) β rad²·sec 
Q(5,6) β vs. r rad² 
Q(6,6) r rad²/sec 

Table 1: Units of the Dynamic Driving Noise 

3.4.3 Redefinition of the Input Vector and Matrix 

The initial input vector, u(t), and input matrix, B, defined earlier represent the combined 

surfaces acting as one input into the system. In other terms, the elevator command is described as 

one variable rather than two, one for the right elevator and one for the left. In order to apply 

redistributed control commands to the surfaces, the state space input vector and matrix is altered 
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to represent the physical surfaces of the aircraft. Previous research has shown the development of 

the redefined input vector and matrix [11,12]. 

3.4.3.1 Input Vector 

The redefined input vector used in this research is 

δ ls (t) 
δ rs (t)


 

umod (t) = δact (t) = δ lf (t) (3.9) 
  
δ rf (t) 
δ r (t)  

where the modified input vector variables are defined as 

δls(t) Left Stabilator Position (rad) 
δrs(t) Right Stabilator Position (rad) 
δlf(t) Left Flaperon Position (rad) 
δrf(t) Right Flaperon Position (rad) 
δr(t) Rudder Position (rad) 

3.4.3.2 Input Matrix 

The input matrix used in this research is shown in Equation (3.10): 

 0 0 0 0 0  
 1

2 Xδ
′ 1

2 Xδe 

′ 1
2 Xδ f 

′ 1
2 Xδ f 

′ 0 
 e 

′ ′ 1
2 Zδe 

′ 1
2 Zδe 

1
2 Zδ f 

1
2 Zδ f 

′ 0 
 

′ ′ ′ ′ 
Bmod = 

 1
2 Mδe 

1
2 Mδe 

1
2 Mδ f 

1
2 Mδ f 

0 
 

(3.10) 

 0 0 0 0 0  
′ ′ ′ 1 − 12 Yδdt 

1
2 Yδdt 

− 12 Yδa 2 Yδa 

′ 1
2 Yδr 

′ 
 

′ ′ ′ ′ ′ 1− 12 Lδdt 

1
2 Lδdt 

− 12 Lδa 2 Lδa 

1
2 Lδr 

 
 ′ ′ ′ ′ ′ − 1 1 1 1 
 2 Nδdt 2 Nδdt 

− 12 Nδa 2 Nδa 2 Nδr  

3.4.4 Augmented System 

The state space system with the modified input vector and matrix, is augmented with a 

reduced order actuator design model. The actuator design model used in this research effort is a 

first order lag approximation. 
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3.4.4.1 Actuator Design Model 

The truth model for each actuator used in the VISTA F-16 SRF simulation is a fourth 

order model. The actuator truth model is 

δ act (20.2)(144.8)(71.4)2 

= 
δ cmd (s + 20.2)(s +144.8)(s2 + 2(0.736)(71.4) s + 71.42 ) 

(3.11) 

The actuator design model used in this research effort, which has been shown to provide adequate 

performance in past research efforts [11, 12], is shown in Equation (3.12): 

δ act = 14 (3.12)
δ cmd s + 14 

The actuator design model has a breakpoint at ω = 14 rad/sec which has been shown to yield 

better matching performance than having the breakpoint at ω = 20.2 rad/sec, which might seem to 

be the obvious reduced order model for Equation (3.11) [11, 12]. The actuator design model is 

then placed into the state space representation 

− 14 0 0 0 0  14 0 0 0 0  
 0 − 14 0 0 0   0 14 0 0 0      

δ� act (t) =  0 0 − 14 0 0 δact (t) +  0 0 14 0 0 δcmd (t)  (3.12) 
    
 0 0 0 − 14 0   0 0 0 14 0  
 0 0 0 0 − 14  0 0 0 0 14 

where 

δls (t) δlscmd 
(t) 

δrs (t)

 


δrscmd 

(t) 
δact (t) = δlf (t) and δcmd (t) = δlfcmd 

(t) (3.13) 
    
δrf (t) δrfcmd 

(t) 
δr (t) 

δrcmd 
(t) 
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3.4.4.2 System Design Augmentation 

Once the state space representation of the actuator design model is defined, that state 

space model is augmented with the actuator design model. Previous research has shown the 

derivation of the augmented design model [11,12]. The continuous-time augmented model used 

in this research is 

� aug (t) = Aaugxaug (t) + Bauguaug (t) + Gaugw(t)  (3.14) 
where 

x aug (t) = 


δ 

x 

act 

(t 
(
) 
t) 



 u aug (t) = [δ cmd (t)]  (3.15) 

and 

A B mod   0  G  (3.16)A aug = 
 0 − 14 ⋅ I 5 x 5 

 B aug = 
14 ⋅ I 5 x 5 

 G aug = 
 0  

3.4.5 Discrete-Time Model Equivalence 

The continuous-time model derived in the previous section is converted into an 

equivalent discrete-time model [11,12] for implementation on the VISTA F-16 aircraft. The 

VISTA F-16 digital flight computer receives discrete measurements at a rate of 64 Hz. These 

sampled measurements are noise-corrupted. Section 3.4.5.2 shows the measurement vector and 

Section 3.4.5.3 shows the associated measurement matrix. 

3.4.5.1 Discrete-Time Equivalent Model 

Since this research effort is implemented on a digital flight computer, the continuous-

time model derived earlier cannot be used directly. The continuous-time model must be 

discretized into a discrete-time model that is equivalent to the continuous-time model in the sense 

that, when observed at the sample times, the outputs of the two models are indistinguishable. The 

discrete-time model has been derived earlier in previous research efforts [11,12]. The discrete-

time model used in this research is: 
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x aug (ti+1 ) = Φ aug (ti+1 , ti )x aug (ti ) + B d −aug u aug (ti ) + w d −aug (ti ) (3.17) 

where 

Φ aug ( t i + 1 , t i ) = e A aug ∆ T 

(3.18) 
B d − aug ( t i ) = 


 ∫0 

∆ T
e A aug τ d τ 

 
B aug 

The variable ∆T is the sample period. The statistics of the zero-mean, white noise, wd-aug(ti), are 

E{w d _ aug (ti )} = 0 
TE{w d _ aug (ti ) w d _ aug (ti )} = Q d −aug

 (3.19) 
TE{w d _ aug (ti ) w d _ aug (t j )} = 0 ti ≠ t j 

where 

TT e Aaugτ dτ  (3.20)Q d −aug = ∫0 

∆T
e A augτ G aug QG aug 

3.4.5.2 Discrete-Time Measurement Vector 

The measurement equation used in this research, which has been derived in previous 

research efforts, is 

z(ti ) = Haugxaug (ti ) + v(ti )  (3.21) 

where Haug is the measurement matrix, and v(ti) is the measurement noise. The measurement 

vector, z(ti), is defined as 

 α(ti )  
 q(ti ) 


 

z(ti ) = 


 

a
p 

n 

(
( 
t
t

i

i 

)
)


 

(3.22) 

 r(ti )  
  
a y (ti ) 
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The measurement variables are defined as 

α(ti) Angle of Attack (rad) 
q(ti) Pitch Rate (rad/sec) 
an(ti) Normal Acceleration (g’s) 
p(ti) Roll Rate (rad/sec) 
r(ti) Yaw Rate (rad/sec) 
ay(ti) Lateral Acceleration (g’s) 

The normal and lateral accelerations are measured at the pilot’s station. Previous research has 

shown the lateral acceleration model of the VISTA simulation did not provide satisfactory 

performance so it was replaced by a linear model [11,12]. This research effort uses the linear 

model for the lateral acceleration in both the design model and the truth model. 

3.4.5.3 Discrete-Time Measurement Matrix 

The measurement matrix, Haug, has been derived in previous research [11,12] and is 

defined as 

H aug =[H D z ]  (3.23) 

where 

 0 0 1 0 0 0 0 0  
 0 0 0 1 0 0 0 0  
  

U U U U 

H = 
− 32.2 Zθ ' − 32.2 Zu ' − 32.2 Zα ' − 32.2 (Zq '−1) 0 0 0 0 

 (3.24) 
 0 0 0 0 0 0 1 0  
 0 0 0 0 0 0 0 1  
 U U U U  
 0 0 0 0 32.2 Yφ '−1 32.2 Yβ ' 32.2 Yp ' 32.2 (Yr '−1) 

 0 0 0 0 0  
 0 0 0 0 0  

U 1 U 1 U 1 U 1 

Dz = 
− 32.2 ( 2 Zδe 

' ) − 32.2 ( 2 Zδe 
' ) − 32.2 ( 2 Zδ f 

' ) − 32.2 ( 2 Zδ f 
' ) 0 

 (3.25) 
 0 0 0 0 0  
 0 0 0 0 0  

U 1 U 1 U 1 U 1 U 1 
 32.2 (− 2 Yδdt 

' ) 32.2 (2 Yδdt 
' ) 32.2 (− 2 Yδa 

' ) 32.2 ( 2 Yδa 
' ) 32.2 (2 Yδ r 

' ) 

and where the U  is the nominal forward velocity used for trim. 
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3.4.5.4 Measurement Noise Vector 

The measurement noise covariance of the measurement noise vector, v(ti), is defined as 

shown in Equation (3.26): 

0.0042 0 0 0 0 0  

 0 0.0062 0 0 0 0  

R = 
 0 0 0.012 0 0 0 

 (3.26) 
 0 0 0 0.022 0 0  
 0 0 0 0 0.0062 0  

 0 0 0 0 0 0.0052 
 

The units of R are consistent with the units in Section 3.4.5.2 for the components of z(ti). It is 

assumed that the measurement vector is zero-mean and has the statistical characteristic of discrete 

white Gaussian noise. It is seen from the measurement noise covariance matrix, R, that all the 

measurement noises are uncorrelated. 

3.5 Failure Modes 

Failure modes must be incorporated into the truth model and design model in order to test 

the MMAE/FS/CR’s response to failures. Failures in this research will be described in terms of 

an effectiveness factor, ε, with a range between zero and one. An effectiveness of 0%, or ε = 0, 

indicates a complete failure whereas an effectiveness of 100%, or ε = 1, indicates completely 

operational. Intermediate effectiveness values indicate partial failures. 

3.5.1 Truth Model Failure Modes 

The truth model has been modified in previous research efforts to incorporate partial and 

complete failures. There has not been a complete failure mode study accomplished for the 

VISTA F-16 aircraft so failure mode assumptions have been made [11,12]. These assumptions 

are based on previous research in this field [7,9-12,17,27,28,32,33]. 

39




Sensor failures can be modeled in several different ways. In the ‘real world’, the failed 

sensor can output no measurements except for noise, a bias in the measurement, an increase in the 

noise level, or in the modeling sense, the H matrix can become modified. The method used in 

previous research and in this research effort is the removal of the measurement while leaving the 

zero-mean white Gaussian noise [11,12]. 

Flight control actuator or surface failures can also be modeled in several different ways. 

In the ‘real world’, the failed flight control actuator/surface can ‘fail to free stream’, meaning the 

flight control surface does not contribute to the control of the aircraft and that airflow over the 

surface is undisturbed and stability derivatives are unchanged. The failed actuator/surface can 

also fail in a locked position, contributing a constant control moment to the aircraft. Portions of 

the flight control surface can be battle damaged, resulting in reduced control authority and 

deterioration in the time response of the actuator/surface. Reduced hydraulic pressure can also 

yield such a partial failure. In this research effort, the actuator/surface total failure mode is 

assumed to be ‘fail to free stream’. This decision is based on previous research efforts in this 

field [7,9-12,17,27,28,32,33]. It is also assumed that the failed surface can still contribute to the 

control of the aircraft if it is only partially failed. In this case, the actuator would have an 

effectiveness value, ε, between zero and one associated with it. 

3.5.2 Design Model Failure Modes 

The use of failure matrices in the linear design model has been introduced in previous 

research efforts [32,33]. The Fai and Fsj matrices are used to alter the design model in order to 

duplicate an actuator/surface or sensor failure. Fai is the failure matrix for the actuator/surface 

(the subscript a denotes ‘actuator’) where the subscript i indicates the index of the failed 

actuator/surface. The Fai failure matrix is an identity matrix except for the ith diagonal term, 

which is the effectiveness of the completely or partially failed actuator/surface. Fsj is the failure 

matrix for a sensor failure (the subscript s denotes sensor) where the subscript j is indicates the 
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index of the failed sensor.  The failure matrices are implemented in the continuous-time design 

models as 

� aug (t) = Aaugxaug (t) + BaugFaiuaug (t) + Gaugw(t)  (3.27) 

and the discrete-time measurement model is 

z(ti ) = Fsj Haug xaug (ti ) + v(ti )  (3.28) 

The only difference in the equivalent discrete-time design model with the addition of the failure 

matrix is 

B d − aug ( t i ) = 
 ∫0 

∆ T
e A aug τ d τ 


 B aug F ai  (3.29) 

On a fully-functional aircraft, the failure matrices are both identity matrices. A failure of an 

actuator/surface is shown by the value of Fai(i,i), where i is the index of the actuator/surface 

failure, becomes the effectiveness value, ε. This reduces the actuator/surface contribution to the 

control of the aircraft, simulating a failure to free stream. By adjusting the effectiveness value, a 

partial actuator/surface failure is duplicated.  A total failure of a sensor at the index, j, is 

duplicated by the value of Fsj(j,j) becoming zero. This eliminates the information for the sensor 

at that index while not eliminating the noise simulating a sensor failure. In this research, partial 

and complete flight control actuator/surface failures to free stream, and complete sensor failures 

are analyzed. 
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3.6 Chapter Summary 

This chapter presented the various models used in this research effort. The ‘real world’ 

VISTA F-16 aircraft was presented first, and then the ‘truth model’ VISTA F-16 SRF computer 

simulation was presented. The state space design of the reduced-order ‘design model’ for the 

MMAE was discussed, including the addition of actuator dynamics. Finally, the various failure 

modes were presented.  Now that the design models have been derived, they are used to form the 

elemental filter banks and the control redistribution algorithm of the MMAE/FS/CR of the next 

chapter. 
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Chapter 4: Multiple Model Adaptive Estimation with Filter Spawning and 
Control Redistribution (MMAE/FS/CR) Overview 

4.1 Chapter Overview 

This chapter presents the Multiple Model Adaptive Estimation with Filter Spawning and 

Control Redistribution (MMAE/FS/CR) algorithm in detail. The first section describes the 

derivation and implementation of the MMAE. The next section presents the filter spawning 

concept. This chapter concludes with a description of control redistribution as it applies to this 

research. 

4.2 Filter Models 

The models used in this research effort are described in chapter three. The ‘design 

model’ is used in each of the Kalman filters within the MMAE, each hypothesizing a different 

failure. The MMAE algorithm compares each model prediction of measurements, before they 

arrive and based on that model’s hypothesis of the current failure status, to the incoming 

measurements and assigns a probability to each hypothesis based on its relative closeness to the 

‘real world’. The following sections describe the general use of the ‘design model’ in the MMAE 

and model scheduling. 

4.2.1 MMAE Filter Model Description (Kalman Filter) 

The MMAE consists of several elemental Kalman filters that run in parallel. 

Measurements are brought in and sent to each of the Kalman filters. All elemental filters conduct 

a measurement update and, based on their residuals, a probability is assigned to each hypothesis 

by the conditional probability generator. The hypotheses used for the basis of elemental filters 

within the MMAE in this research consist of several failure hypotheses and one fully functional 

hypothesis. By analyzing the residuals of each of the elemental filters, the failure status of the 

aircraft is determined. 
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The models used in the Kalman filters are linearized dynamic equations of the VISTA F-

16 aircraft. These models have been linearized about a trimmed flight condition. Small 

perturbations in the trim conditions caused by the application of flight controls are the inputs to 

the state space model. It is seen in chapter three that a failure matrix can be mixed with the input 

matrix of the state space model in order to duplicate a flight control actuator/surface failure to 

free stream. By using a separate failure matrix for each elemental filter, the elemental hypothesis 

failure models are created. The fully functional model has the failure matrix equal to an identity 

matrix of the same size. The sensor failures are also identified in the same fashion except using a 

sensor failure matrix, as is also shown in chapter three.  In the case of a sensor, a zero in the 

sensor failure matrix identifies the total failure. This creates the failure hypothesis models for the 

failed sensors. 

In an initial implementation, having one filter hypothesize a fully functional aircraft and 

each other filter hypothesize a single failure, previous research has demonstrated the success of 

MMAE in detecting a single complete sensor or actuator/surface failure [7,9-12,17,27,28]. Once 

a single failure is detected, different hypotheses can be brought online that look for a second 

failure. As explained in Chapter 2, Section 2.3.6, a hierarchical method is used in order to look 

for the second failure while maintaining the same number of elemental filters as was used to 

detect the first failure. The second bank of filters still contains a fully functional aircraft 

hypothesis, in order to back up the decision ‘tree’ of what bank of filters to use in the case of 

additional measurements over time indicating that a failure had not occurred after all.  In previous 

research, this method has shown satisfactory performance in the detection of two complete 

failures [7]. Section 4.3 discusses the filter spawning concept that allows the MMAE to handle 

partial failures. 

Through these basic detection principles, the MMAE depends heavily upon the ‘design 

model’. Previous research on this topic has been conducted under one flight condition (Mach 0.4 
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and 20,000 ft) because of the difficulty in the detection of failures. In order to test the MMAE 

completely, the algorithm must be tested under multiple flight conditions. 

4.2.2 Model Scheduling 

It has been shown in previous research that if the MMAE is based on a single flight 

condition, and the aircraft moves away from that flight condition, all linear perturbation models 

are invalidated to the extent that an MMAE for failure detection becomes incapacitated: no 

models correctly represents the ‘real world’ situation [9,10]. This drives the requirement for 

model scheduling. Model scheduling is the process of storing multiple models based on multiple 

regions of the flight envelope. The flight envelope is the region bounded by airspeed and altitude 

where the aircraft flies. As the aircraft transitions to a new location within the flight envelope, a 

new ‘design model’ based on a trim condition valid for that region within the flight envelope is 

used, either by simple lookup tables or by interpolation among table entries. 

In the case of the MMAE, the trim condition changes for each of the hypotheses as the 

aircraft moves to a new trim condition.  Model scheduling is required in order to estimate the 

aircraft status correctly throughout the flight envelope. Having a ‘design model’ based on all the 

trim conditions within the flight envelope completes this. As the aircraft nears a prestored trim 

condition, the ‘design model’ valid for that region is used. In this research effort, each prestored 

trim condition is 50 psf (pounds per square foot) from the next prestored trim condition. This is 

shown later to provide good detection performance. The ‘design model’ is then incorporated as 

before with the failure matrices in order to search continuously for all failures. The same is true 

with the measurement matrix. As the aircraft goes to a new trim condition, the measurement 

matrix that best duplicates the measurements for that trim condition is used. This process allows 

for the continuous operation of the MMAE for flight control failure detection, even though the 

aircraft is changing trim conditions. 
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4.3 Filter Spawning 

Filter spawning is a concept developed in previous research [11,12]. This concept gives 

the MMAE the ability not only to detect failures but also determine the effectiveness of the failed 

flight control actuator/surface for the case of partial failures. This is accomplished by using the 

MMAE to look for an initial failure.  Once an actuator/surface failure is identified, the filter 

spawning algorithm launches several filters based on that one actuator/surface having failed, but 

each modeled with a different effectiveness. By blending the MMAE/FS elemental probabilities 

for the fully functional aircraft, the fully failed actuator/surface and the partially failed 

actuator/surface as assumed by the spawned filters, an estimate of the actuator effectiveness is 

made. This method provides a finer level of discretization and produces a more accurate estimate 

of effectiveness than using a filter based only on a fully functional aircraft hypothesis and a filter 

based on a fully failed actuator/surface hypothesis. The effectiveness of the partially failed 

actuator/surface is important because the actuator/surface can still be used at the lower 

effectiveness value. This is important in the case of the F-16 aircraft for which the rudder is the 

surface that produces the primary yawing moment on the aircraft. If the rudder is operating at 

50% effectiveness, then it is still useful for control of the aircraft whereas in the older 

configuration, the 50% failure of the rudder would be declared completely failed, loosing any 

effectiveness remaining and an important control surface. The following sections describe the 

filter spawning concept in detail. 

4.3.1 Filter Spawning Design 

Previous research has explored filter spawning in great detail [11,12]. Presented here is a 

brief description of the filter spawning design and operation. As mentioned above, the MMAE 

detects the initial actuator failure. The first step of the filter spawning algorithm is to determine 

the probability of the failure declaration from the MMAE in order to reduce false alarms. The 

initial detection of the failure is done in a MAP method. If the probability associated with the 
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failure is large (98% probability of failure), then the failure status is checked as positive. If the 

failure is a flight control actuator/surface, then the actuator/surface failure is declared and the 

effectiveness of the failed actuator/surface is subsequently determined with the aid of spawning. 

The effectiveness, ε, of the failed actuator/surface is determined by incorporating 

additional filters based on various levels of effectiveness online in the MMAE bank.  This 

provides a finer discretization of the parameter space. Each spawned filter has a different 

effectiveness value between zero and one. Zero relates to the completely failed actuator/surface, 

whereas an effectiveness value of one relates to a fully functional actuator/surface. 

4.3.2 Creating Estimates With Filter Spawning 

The MMAE is used to determine the probabilities associated with each of the spawned 

filters and the Bayesian blending approach is taken in the estimation of the actuator effectiveness. 

The equation shown below illustrates this approach: 

∑[ε k ⋅ pk (ti )] 
ˆ(ti ) = k∈K 

∑ pk (ti )
 (4.1)ε 

k∈K 

where the ε is the estimate of effectiveness, and the εk value is the effectiveness hypothesis in any 

one of the spawned filters or the associated fully failed actuator/surface elemental filters or the 

fully functional aircraft elemental filter. Each of the filters is given the probability of pk(ti) by the 

MMAE conditional probability generator. K is the set of the spawned filters, the fully failed 

actuator/surface elemental filter and the fully functional aircraft elemental filter. The 

denominator in Equation (4.1) is used as a scaling factor such that all the elemental probabilities 

will sum to equal one. 

4.4 Filter Spawning Implementation 

The implementation of MMAE/FS algorithm is broken up into several steps. The first 

step is the initialization of the filter banks and the application of initial conditions. The next step 
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is the conventional MMAE computation. Once a failure declaration is made on a specific 

actuator/surface, the effectiveness is determined. This section also introduces bank swapping, 

which is the next and final step of this algorithm.  Figure 4 shows the filter spawning algorithm. 

Figure 4: Filter Spawning Algorithm [11,12] 
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4.4.1 Initialization 

The first step in the implementation of the MMAE/FS is the initialization of the filter 

banks. These banks contain each failure hypothesis for all single actuator/surface and sensor 

failures and a fully functional aircraft hypothesis. Each bank (except one) also includes spawned 

filters for a particular actuator/surface failure. Table 2 shows the bank descriptions of the MMAE 

with Filter Spawning [11,12]. 

Bank 
1 2 5 

FF FF FF FF 
LS LS LS 

Complete RS RS RS 
Actuator LF LF LF 
Failure RF RF RF 

R R R 
AA AA AA 

Complete PR PR PR 
Sensor NA NA NA 
Failure RR RR RR 

11 YR YR YR 
12 LA LA LA 
13 LSε21 RS ε31 LF ε41 RF ε51  R ε61 

Spawned LS ε22 RS ε32 LF ε42 RF ε52  R ε62 

15 LS ε23 RS ε33 LF ε43 RF ε53  R ε63 

4 3 6 
FF FF FF 
LS LS LS 
RS RS RS 
LF LF LF 
RF RF RF 
R R R 

AA AA AA 
PR PR PR 
NA NA NA 
RR RR RR 
YR YR YR 
LA LA LA 

14 

Fully Functional (FF) Left Stabilator (LS) Right Stabiltator (RS)

Left Flaperon (LF) Right Flaperon (RF) Rudder (R) 

Angle of Attack (AA) Pitch Rate (PR) Normal Acceleration (NA)

Roll Rate (RR) Yaw Rate (YR) Lateral Acceleration (LA)


Table 2: MMAE with Filter Spawning Bank Descriptions 

Previous research began with three spawned failure hypotheses [11,12], but more spawned filters 

can be used to provide a better effectiveness estimate. The use of more spawned filters also 

increases the computational load, since more filters are required to run in parallel. 

The next step in the initialization of the MMAE/FS is to apply the initial trim conditions 

to all the models within the MMAE/FS.  As the flight conditions change, the new trim conditions 

are applied to all the elemental filters for use in the MMAE/FS in the model scheduling routine. 

The MMAE/FS uses only one bank at a time and the initial starting bank is declared at this time. 
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The aircraft is assumed to be fully functional at the start of the flight. The lower bound of the 

MMAE is also set.  Previous research has found that a lower bound of 0.001 performs acceptably. 

Initially, the lower bound value is used for all failure probabilities. All the probability minus the 

sum of the lower bound elemental probabilities for each failure state is initially started in the fully 

functional aircraft hypothesis elemental filter. At this point, the MMAE/FS is initialized and 

ready to begin operation. 

The implementation of the FS algorithm for this research only uses the banks 2 through 6 

from Table 2. This was done because considerable software changes would have been required to 

include bank 1 (no active spawned filters). When the MMAE/FS is initialized, bank 2 is 

arbitrarily used. The use of bank 1 in the actual aircraft implementation would be a better 

decision. 

4.4.2 Conventional MMAE Computation 

The next step in the implementation of the MMAE/FS algorithm is the conventional 

MMAE computation. The equations shown in Chapter 2 (Equations (2.4) through (2.10)) 

describe the state propagation from the previous time to the current time, and the measurement 

update. From the measurement update algorithm, the residuals, rk(ti), and the covariance of the 

residuals, Ak(ti), are produced. These values are used to determine the conditional probability, 

pk(ti), of each filter. The hypothesis that most closely matches the incoming measurements is 

given the highest conditional probability. 

4.4.3 Failure Detection, Estimation, and Control 

Once the conventional MMAE has been propagated and the measurement has been 

incorporated, the conditional probabilities assigned to each failure hypothesis are analyzed. If the 

highest probability is above a certain threshold (0.98 for this research effort), the failure 

hypothesis with the highest conditional probability is established.  If this failure hypothesis is the 

fully functional hypothesis, then no failure is declared and the MMAE/FS moves onto the next 
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step. If the highest conditional probability rests on a sensor failure, then a sensor failure is 

declared and the MMAE/FS moves onto the next step.  If the highest conditional probability lies 

on an actuator/surface failure, then a flight control actuator/surface failure is declared, and the 

appropriate filters are spawned. At this point, the MMAE/FS uses the spawned filters in the 

current filter bank to assess the degree of failure (or its complement, the degree of effectiveness). 

The spawned filters are used to determine the effectiveness of the actuator using the Bayesian 

blending technique mentioned earlier.  Once the effectiveness of the actuator/surface is 

determined, the flight control commands are redistributed in order to compensate for the 

actuator/surface (partial or full) failure. Control redistribution is explained later in this chapter. 

4.4.4 Bank Swapping 

Once the detection, estimation, and control step is accomplished, bank swapping occurs. 

This is required since the MMAE/FS is based on banks of filters.  In order to change the 

particular actuator/surface for which the spawned filters in the current bank are designed, bank 

swapping among the banks defined in Table 2 must occur. This step consists primarily of two 

parts, the first of which is bank calculation and the second of which is swapping conditional 

probabilities. 

The bank calculation is based on the flight control failure hypothesis with the highest 

conditional probability. The actuator/surface failure with the highest conditional probability 

determines the bank of elemental filters used to detect and estimate failures. This presumes that 

there are no spawned filters yet; if there are spawned filters, then their probabilities are summed 

with the probability of the full failure of that actuator/surface. If a sensor failure hypothesis or 

fully functional hypothesis contains the highest conditional probability, then the filter bank 

without any spawned filters is selected. 

When an actuator/surface failure is identified by the MMAE/FS, the spawned filters for 

that failure are brought online. The conditional probability within the fully failed hypothesis is 
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evenly distributed into the newly spawned filters and the filter based on the fully failed 

hypothesis. If the spawned filters are collapsed, (i.e., retracted) the conditional probabilities are 

collapsed into the corresponding fully failed elemental filter [11,12]. 

4.5 Control Redistribution 

The Control Redistribution (CR) algorithm used in this research effort has been 

previously explored [32,33].  This section briefly describes the previous research efforts to apply 

control based on the estimations of the MMAE/FS. This section then discusses the 

implementation of CR as it is used in this research effort. 

4.5.1 Control Application 

There have been two primary types of control investigated for use with the MMAE/FS 

methodology [32,33]. The first type of control is the Multiple Model Adaptive Controller 

(MMAC). In this controller, elemental controllers are created for each hypothesis using modern 

LQG synthesis [23]. One form of the MMAC applies blended control where, like the estimates 

from the MMAE, the elemental controller commands are weighted with the conditional 

probabilities and summed together. This is shown in Chapter 2, Figure 2.  In some cases, this 

approach can cause unacceptable aircraft responses since some of the contributing control 

commands are based on failures that have not actually occurred, due to the lower bound on the 

conditional probability. Another form of MMAC uses MAP methodology in which the elemental 

LQG controller with the highest conditional probability is used to control the aircraft, eliminating 

the insertion of improper control commands. However, this precludes purposeful blending of 

outputs of more than one elemental LQG controller (which might be useful for best performance; 

recall Section 2.4.1). 

A second type of controller tested in previous research [32,33] is the CR algorithm used 

with an MMAE-based controller shown in Chapter 2, Figure 1. In this case, the MMAE/FS is 
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used to detect failures and estimate the actuator effectiveness, and that information is used to alter 

the commands from the Block 40 flight control system in order to perform the commanded 

maneuver. Bayesian blending versus MAP is an issue for both MMAE-based control as well as 

for MMAC-based control. 

4.5.2 MMAC Controller 

LQG synthesis [23] is used to form the elemental controllers for the MMAC. The LQG 

synthesis requires three assumptions that are readily met for this application. The first 

assumption is that the ‘design model’ used is a linear, discrete-time model. The linear model 

assumption is met because linear perturbation models about trim are used to describe the behavior 

of the aircraft. The second assumption is that a quadratic cost function is well suited to flight 

control problems. This is true for flight control problems since the cost function attempts to 

minimize the mean squared deviations in the states while not expending excessive amounts of 

control energy or power to do so. The final assumption is the use of white Gaussian noise in the 

models. It has been found in previous research that the noises such as sensor noise and wind 

gusts have been successfully modeled according to this assumption. The justification for the 

Gaussian noise assumption is through the use of the Central Limit Theorem [21]. 

The first part of the LQG synthesis is the LQ regulator.  The purpose of the regulator is to 

determine the control function which minimizes a specific cost function. Recall the discussion in 

Section 2.5.2 and Equation (2.16) for the general cost function. By balancing the quadratic cost 

function penalties, proper flight control actuator commands are produced in order to achieve the 

commanded maneuver. 

LQG synthesis for this case entails the application of PI compensation rather than a 

simple proportional regulator. PI compensation is required in order to achieve Type I 

performance characteristics [23], or in other words, to track a constant input signal with a zero 

steady-state error even though constant unknown disturbances are added to the system. Once the 
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PI compensator is incorporated into the controller, the LQG PI controller gains are determined 

and applied [23]. 

Model following techniques can be used to improve the performance and the robustness 

of the LQG controller. The first technique that can be used is implicit model following. In 

implicit model following, the controller is penalized for deviations from the desired system 

response characteristics as specified by the output of the ‘implicit’ system model. This method 

does not necessarily improve the performance of the system at design conditions but robustness 

can be increased by its use [23]. The second technique that can be used is explicit model 

following.  A Command Generator Tracker (CGT) incorporates this method [23]. The CGT 

forces the system to follow a desired model output, where the model is called the command 

generator. In this method, the performance of the system as compared to a desired trajectory is 

enhanced, but the feed-forward portion of the compensator does not affect the robustness of the 

system. 

Previous research has shown the attempted design of the CGT/PI controller in order to 

reproduce the commands from the Block 40 flight control system [32,33]. The attempt to use 

LQG synthesis of a CGT/PI controller to replicate the Block 40 flight control system failed 

because the associated weighting matrices that would have been used to perform the synthesis for 

each elemental controller could not be determined. Various quadratic cost function penalties 

were tried but no cost function was found that gave the LQG based controller the capability to 

follow the desired commands of the Block 40 flight control system. Therefore, MMAC was 

abandoned in favor of MMAE-based control with Control Redistribution (CR). 

4.5.3 Control Redistribution 

The alternative method of control, as previously researched [32,33], is Control 

Redistribution (CR). The advantage of CR is the ability to apply corrective control to the aircraft 

without the need to modify the Block 40 flight control system. This is advantageous to the user 
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since the original flight control system is used and does not need to be changed or altered and 

then recertified for flight-worthiness. The CR algorithm uses the MMAE/FS to detect and 

estimate the effectiveness of flight control actuator/surface failures. The CR algorithm then 

redistributes the command signals from the flight control system to other operational 

actuators/surfaces in order to accomplish the commanded maneuver. It is assumed that enough 

flight control redundancy is available such that a command intended for a failed actuator/surface 

can be redistributed to the remaining actuators/surfaces to accomplish the desired maneuver. This 

may not always be the case, since the loss of an actuator decreases the total control authority for 

the aircraft. 

The mathematical basis for CR is presented here [32,33]. The product of the control 

matrix B and the input vector u(ti) for a fully functional aircraft must equal the product of the 

control matrix Bfail and redistributed input vector ur(ti) of the aircraft with a failed 

actuator/surface, as shown in Equation (4.1): 

Bu �� 
� � ≡ B fail u r �ti �  (4.1) 

The matrix that describes the failure Fai is described in Chapter 3, Section 3.5.2. The 

actuator/surface failure matrix is an identity matrix with the effectiveness value ε as the ith 

diagonal term corresponding to the fully failed (ε = 0) actuator/surface. This development is only 

for the case of ε = 0. This actuator failure matrix is then used to determine Bfail : 

B fail = B Fai  (4.2) 

The redistribution input ur is described mathematically by employing a linear transformation 

matrix Dai. The Dai matrix represents the control redistribution corresponding to the case of the ith 

actuator/surface having failed. The relationship is: 

u r (ti ) = Dai u(ti )  (4.3) 

By substituting Equations (4.2) and (4.3) into (4.1), and realizing the result must be true for all 

values of the control vector u(ti), the resulting equation is generated: 
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BFai D ai = B  (4.4) 

Since Fai is rank deficient during complete actuator/surface failures (ε = 0), an inverse operation 

on [BFai] cannot be used to determine the control redistribution matrix, Dai. A pseudoinverse 

must be taken in order to solve Equation (4.4) for Dai. The pseudoinverse is denoted in the 

resulting Equation (4.5) by the + superscript [32,33]. 

Dai = (BFai ) 
+ B  (4.5) 

In the case of a partial failure where Fai is not rank deficient, the actual inverse can be 

taken to determine the values of Dai. Here we consider only the case of total failures. Using this 

result to treat partial failures will be discussed later. The pseudoinverse used in this research only 

gives an approximate value that is the best solution in the least squares sense. A second approach 

to the solution is through the use of a weighted pseudoinverse [23]. This method allows the 

designer to adjust the redistribution matrix to allow more or less redistributed control to go to 

particular actuators in order to compensate for the failed actuator/surface, based upon his or her 

design preferences. The control redistribution matrix used in this research is shown in Equation 

(4.6): 

 0.0000 1.0000 1.1037 −1.1037 −1.2719 
 1.0000 0.0000 − 1.1037 1.1037 1.2719   

Da =  0.9060 − 0.9060 0.0000 1.0000 1.1524 (4.6) 
  
− 0.9060 0.9060 1.0000 0.0000 −1.1524 
− 0.7862 0.7862 0.8678 − 0.8678 0.0000 

This equation shows the complete control redistribution matrix for all complete failures. Its 

columns are the ith column of each Dai of Equation (4.5). It can also be seen from equation (4.6) 

that the amount of control required in order to compensate for a complete rudder failure is large 

with respect to the other failures. During the actual simulation, if for example a right stabilator 

failure is identified (i = 2), the control redistribution matrix would be a 5-by-5 identity matrix 

with its ith (2nd) column replaced by the ith (2nd) column from Equation (4.6): 
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1.0000 1.0000 0 0 0  
 0 0.0000 0 0 0  
  

Dai =  0 − 0.9060 1.0000 0 0  (4.7) 
  
 0 0.9060 0 1.0000 0  
 0 0.7862 0 0 1.0000 

If, continuing with the example of the complete right stabilator failure, the actual control used 

based on the knowledge of the failure is 

u r (ti ) = Dai u(ti )  (4.8) 

4.5.4 Control Techniques with Partial Actuator/Surface Failures 

There are two approaches analyzed in this research effort to apply control to an aircraft 

given a partial failure of the actuator/surface. The first approach is to adjust the redistribution 

matrix to compensate for the partial actuator/surface failure, and the second approach is to 

increase the control gain on the partially failed channel without applying CR.  The first approach 

involves using the redistribution matrix Dai matrix and multiplying the ith column by the 

complement of the actuator/surface effectiveness (1 – ε) and adding 1 to the ith diagonal term. 

This results in a full command to the partially failed actuator/surface in anticipation that ε of the 

desired response is thereby accomplished; (1 – ε) of the desired response is then achieved through 

the control redistributed to the other actuators/surfaces. The second approach is to multiply the 

gain of the partially failed actuator by the inverse of the actuator/surface effectiveness. This is 

actually equivalent to using the development of Equations (4.1)-(4.4) for nonzero ε: with Fai of 

full rank, Equation (4.4) yields Dai = Fai 
-1. The first method is preferred in this research effort 

since the cause of the partial failure is unknown.  The second method increases the gain on that 

actuator/surface, and without knowing the cause of the partial failure, this could cause greater 

damage to the aircraft (such as a hydraulic leak in the actuator: by increasing the gain to that 

actuator, the hydraulic system can be drained, leading to other flight control problems). 
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4.5.5 εhat (ahat) vs. εmap (aout) 

In previous research efforts, two methods have been used to compute the estimate of 

actuator/surface effectiveness ε [11,12]. The first method uses Equation (4.1) to determine an 

estimate of effectiveness ε̂  = “εhat” of a partially failed actuator/surface.  In previous research 

[11,12] it was found that, while the aircraft was not maneuvering and while applying purposeful 

dither, the εhat created a biased estimate of the effectiveness of the partially failed 

actuator/surface. To solve this problem, a mapping from εhat to εmap was established 

experimentally to provide good estimates of effectiveness, εmap, given a non-maneuvering aircraft 

using purposeful dither. This research effort shows the performance difference between the two 

estimates of effectiveness for a maneuvering aircraft without dither. 

4.6 Chapter Summary 

This chapter presented the operation of MMAE with filter spawning in order to detect 

sensor failures and detect and estimate the extent of flight control actuator failures for use on the 

VISTA F-16 SRF simulation tool. This chapter also provided an explanation of the different 

possible control applications once a failure has been identified. The MMAC controller contains a 

separate elemental controller design for each failure case. This method relies on LQG synthesis 

to develop the controller. Unfortunately, LQG synthesis could not produce a controller that 

adequately represented the Block 40 flight control system, so a second approach had to be taken 

to apply corrective control. This approach uses Control Redistribution (CR) to control the aircraft 

once the MMAE/FS algorithm detects a flight control actuator/surface failure. CR redistributes 

the control originally intended for a failed actuator, to other redundant flight control actuators in 

order to accomplish the intended maneuver. The next chapter will present the results of the 

MMAE/FS/CR while flying in various flight conditions. 
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Chapter 5 - Results 

5.1 Chapter Introduction 

This chapter provides the results and analysis of this research effort.  Each section will 

introduce the concept, then present the results, and finally present an analysis of the results. The 

test flight maneuver and flight conditions used to test the performance of the MMAE/FS/CR are 

explained in Section 5.2. Section 5.3 presents the performance of the MMAE/FS detection 

capabilities. Section 5.4 shows the capability of the CR to compensate for failed actuators. 

Finally, Section 5.5 shows the performance of the MMAE/FS/CR. 

5.2 Test Flight Maneuvers and Flight Conditions 

This section describes the maneuver, flight conditions, and the type of analysis used to 

form the results. The maneuver is described first, followed by the initial flight conditions. The 

explanation for the dither removal is then presented. Finally, the Monte Carlo analysis is 

presented in more detail. 

5.2.1 Flight Maneuvers 

The original flight condition used in previous research efforts [7, 9-12, 15, 24, 25, 29, 30] 

has been straight and level flight at the airspeed of Mach 0.4 and an altitude of 20,000ft. Previous 

research [29, 30] into the application of control used a maneuver called a doublet.  A doublet is 

the application of control in one direction, then the application of control in the opposite direction 

using the same magnitude and command duration. This type of maneuver is useful in the 

detection of failures without significantly changing the dynamic pressure or attitude of the 

aircraft. 

In this research effort, the primary maneuver used to test the MMAE/FS/CR is a set of 

two doublets followed by a long duration commanded maneuver. This maneuver is created in 

order to detect failures and apply proper control while changing dynamic pressure and aircraft 
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attitude. The doublets provide sufficient aircraft excitation to make failures apparent to the 

MMAE/FS. The long duration maneuver provides the demonstration of the CR capability to 

apply proper commands in order to achieve the desired maneuver while the aircraft changes 

dynamic pressure and attitude. 

The longitudinal maneuver used in this research effort consists of two pitch doublets and 

a long duration pitch maneuver. The failure occurs at one second into the simulation. The first 

pitch doublet occurs at five seconds and lasts for two seconds. The second pitch doublet occurs at 

nine seconds and also lasts for two seconds. The doublet maneuvers occur five seconds into the 

simulation to demonstrate the inability of the MMAE/FS to detect failures without the excitation 

of the aircraft. In this research effort, the purposeful dither is not used, whereas a final 

implementation of this algorithm might use dither in the absence of pilot commanded maneuvers. 

The duration of the doublet maneuvers was chosen to be two seconds because of the aircraft 

response characteristics. The long duration pitch maneuver occurs at fifteen seconds and lasts 

five seconds. The long duration maneuver occurs approximately five seconds after the doublets 

in order to separate the pilot commands and let the aircraft dynamics caused by the doublets 

settle. 

The lateral maneuver consists of two roll doublets conducted with the same time 

characteristics as the longitudinal maneuver. The lateral maneuver also contains a long duration 

roll maneuver starting at fifteen seconds into the simulation. The long duration roll maneuver 

lasts for four seconds to roll the aircraft into a desired 40-degree banked turn. The failure is also 

added at one second in the lateral case as well. 

The complete longitudinal and lateral simulation times are twenty-four seconds. In all 

maneuvers, the pilot-commanded stick force is five pounds of force. The longitudinal maneuver 

is used to demonstrate the detection and control performance with stabilator failures and 

longitudinal sensor failures (angle of attack, pitch rate, and normal acceleration sensors). The 
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lateral maneuver is used to demonstrate the detection and control performance with flaperon and 

rudder failures and lateral sensor failures (roll rate, yaw rate, and lateral acceleration sensors). 

5.2.2. Flight Conditions 

The flight conditions at the start of the maneuver are straight and level at the airspeed of 

Mach 0.47 and an altitude of 20,000ft. This flight condition was chosen because it has a dynamic 

pressure of approximately150 psf (pounds of force per square foot) whereas previous research 

efforts conducted at the Mach 0.40 airspeed and an altitude of 20,000ft had a dynamic pressure of 

approximately 100 psf. This will illustrate the performance of the MMAE/FS/CR at other than 

the proven original flight conditions. 

5.2.3. Dither Removal 

The dither signal used in previous research efforts has been removed for this research 

effort. It is found that the dither signal in its current state produces undesirable aircraft control 

performance when combined with purposeful, large maneuvers, resulting in false failure 

detections created by the MMAE/FS. The dither signal also uses a large percentage of the 

available actuator strength as shown in Table 3. The removal of the dither signal is discussed 

later in this chapter. 

Control Channel Maximum Magnitude Dither Magnitude Actuator Percentage 
Used 

Pitch ±30.25 lbs ±12.00 lbs 39.7% 
Roll ±17.00 lbs ±11.00 lbs 64.7% 
Yaw ±160.0 lbs ±30.00 lbs 18.8% 

Table 3: Dither Magnitudes Compared to Maximum Magnitudes Per Channel 

5.2.4. Monte Carlo Analysis Definition 

The performance of the MMAE/FS/CR is evaluated using a Monte Carlo analysis. Each 

Monte Carlo analysis is made up of ten separate simulations. Each simulation uses a different 
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random noise sample but all simulations use the same noise strength for each noise within the 

overall simulation. 

5.3 Failure Detection Performance 

5.3.1 Failure Detection 

The first major portion of this research effort is demonstrating the capability to detect 

complete and partial actuator failures and complete sensor failures while undergoing maneuvers 

and changing dynamic pressure. The longitudinal characteristics of the MMAE/FS are analyzed 

first, followed by the lateral characteristics. The long duration longitudinal maneuver specifically 

shows the performance of the MMAE/FS to detect failures during a change in dynamic pressure, 

due to the large changes in velocity and, to a lesser degree, altitude. The initial dynamic pressure 

before the long duration maneuver is approximately 150 psf. After the long duration maneuver, 

the dynamic pressure changes to 130 psf. In the case of actuator failures, CR based on knowing 

εtrue is used in order to analyze the MMAE/FS performance thoroughly.  Later, in Section 5.4, the 

full MMAE/FS/CR algorithm with failures will be compared both to a fully functional aircraft 

commanded to maneuver (a baseline of what is actually desired from the aircraft) and to this case 

of the CR artificially knowing the εtrue  (a second baseline indicating the best one could hope to 

accomplish via any CR algorithm in replicating the desired aircraft maneuvering). The following 

plots show the elemental probabilities for each complete sensor and actuator failure and each 

partial actuator failure. The plot presentation order is presented on the next page. 
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Surface Failures 

1. Fully Functional Aircraft 
2. Fully Failed Left Stabilator 
3. Partially Failed Left Stabilator 
4. Fully Failed Right Stabilator 
5. Partially Failed Right Stabilator 
6. Fully Failed Left Flaperon 
7. Partially Failed Left Flaperon 
8. Fully Failed Right Flaperon 
9. Partially Failed Right Flaperon 
10. Fully Failed Rudder 
11. Partially Failed Rudder 

Longitudinal Sensor Failures 

12. Failed Angle of Attack Sensor 
13. Failed Pitch Rate Sensor 
14. Failed Normal Acceleration Sensor 

Lateral Sensor Failures 

15. Failed Roll Rate Sensor 
16. Failed Yaw Rate Sensor 
17. Failed Lateral Acceleration Sensor 

These plots show the mean value of the Monte Carlo Simulations as the solid line and the 

mean ± one-sigma (standard deviation) bands are each shown with a dotted line. The simulation 

time is 24 seconds with the failure initially occurring at one second into the simulation. The x-

axis of each plot represents the time in seconds. 

On the first set of elemental probability plots (denoted as “Figure _a”), the probabilities 

corresponding to the elemental filters hypothesizing a fully functional aircraft and full 

actuator/surface failures (left stabilator failure, right stabilator failure, left flaperon failure, right 

flaperon failure, and rudder failure) are shown on the top of the page. On the lower half of the 

page, the probabilities associated with elemental filters based on assumed sensor failures are 

presented (angle of attack, pitch rate, normal acceleration, roll rate, yaw rate, and lateral 

acceleration sensor failures). On the second page of elemental probabilities (denoted as 
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“Figure _b”), the elemental probabilities corresponding to the spawned filters are presented as 

well as the “combined” probability (formed as the sum of the probabilities for the three spawned 

filters plus the probability of the associated fully-failed-actuator filter) and the estimates of 

effectiveness εhat and εmap. The “combined” probability is presented to establish a method to 

detect partial actuator/surface failures faster by analyzing the elemental probability in a failed 

channel rather than just in each elemental filter separately. The εhat and εmap plots are presented to 

determine which estimate of effectiveness produces a more accurate estimate during pilot-

commanded maneuvering.  The solid line on the effectiveness plots represents the mean value of 

effectiveness and the dotted line represents the true value. The mean ± one standard deviation is 

not shown on the plots for clarity, since the standard deviation is very small. The effectiveness in 

the plots shows the initial effectiveness value to be 100% fully functional. In actual 

implementation, the MMAE/FS would not calculate an estimate of effectiveness until after a 

failure is declared.  In this research, the spawned filters are continuously running from the start of 

the simulation to allow easier software implementation (i.e., there are always 15 elemental filters 

and never 12 elemental filters, despite the discussion surrounding Table 2 in Chapter 3). The 

partial failure hypothesis for the spawned filters is initially started (arbitrarily) as a partially failed 

left stabilator. Since the MMAE/FS has not declared a failure, the bank initial condition does not 

affect the performance of the MMAE/FS.  As a result of the initial condition, the estimate of 

effectiveness shows 100%, meaning that the Filter Spawning is using the left stabilator partial 

failure hypothesis in the three spawned filters, and the effectiveness of that actuator (left 

stabilator in this case) is declared to be 100%, or fully functional. The “desired” plot in each of 

the figures shows the pilot-commanded maneuver in pounds of stick force, so the elemental 

probabilities (and later the state values) can be compared directly to the purposeful pilot 

commands. 

Figures 5 – 34 on failure detection performance are presented as a group on the following 

pages. Then, starting on page 119, they are discussed in detail. 
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Figure 5a: Elemental Probabilities, Fully Functional Aircraft, Pitch Maneuver With Dither 
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Figure 5b: Elemental Probabilities, Fully Functional Aircraft, Pitch Maneuver With Dither 
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Figure 6a: Elemental Probabilities, Fully Functional Aircraft, Roll Maneuver With Dither 
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Figure 6b: Elemental Probabilities, Fully Functional Aircraft, Roll Maneuver With Dither 
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Figure 7a: Elemental Probabilities, Fully Functional Aircraft, Pitch Maneuver 
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Figure 7b: Elemental Probabilities, Fully Functional Aircraft, Pitch Maneuver 
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Figure 8a: Elemental Probabilities, Fully Functional Aircraft, Roll Maneuver 
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Figure 8b: Elemental Probabilities, Fully Functional Aircraft, Roll Maneuver 
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εεε Figure 9a: Elemental Probabilities, Left Stabilator Failure, ε = 0% 
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εεεFigure 9b: Elemental Probabilities, Left Stabilator Failure, ε = 0% 
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εεε Figure 10a: Elemental Probabilities, Left Stabilator Failure, ε = 25% 
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εεεFigure 10b: Elemental Probabilities, Left Stabilator Failure, ε = 25% 

76




εεε Figure 11a: Elemental Probabilities, Left Stabilator Failure, ε = 50% 
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εεεFigure 11b: Elemental Probabilities, Left Stabilator Failure, ε = 50% 
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εεε Figure 12a: Elemental Probabilities, Left Stabilator Failure, ε = 75% 
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εεεFigure 12b: Elemental Probabilities, Left Stabilator Failure, ε = 75% 
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εεε Figure 13a: Elemental Probabilities, Right Stabilator Failure, ε = 0% 
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εεεFigure 13b: Elemental Probabilities, Right Stabilator Failure, ε = 0% 
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εεε Figure 14a: Elemental Probabilities, Right Stabilator Failure, ε = 25% 
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εεεFigure 14b: Elemental Probabilities, Right Stabilator Failure, ε = 25% 

84




εεε Figure 15a: Elemental Probabilities, Right Stabilator Failure, ε = 50% 
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εεεFigure 15b: Elemental Probabilities, Right Stabilator Failure, ε = 50% 
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εεε Figure 16a: Elemental Probabilities, Right Stabilator Failure, ε = 75% 
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εεεFigure 16b: Elemental Probabilities, Right Stabilator Failure, ε = 75% 
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εεεFigure 17a: Elemental Probabilities, Left Flaperon Failure, ε = 0% 
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εεεFigure 17b: Elemental Probabilities, Left Flaperon Failure, ε = 0% 
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εεεFigure 18a: Elemental Probabilities, Left Flaperon Failure, ε = 25% 
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εεεFigure 18b: Elemental Probabilities, Left Flaperon Failure, ε = 25% 
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εεεFigure 19a: Elemental Probabilities, Left Flaperon Failure, ε = 50% 
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εεεFigure 19b: Elemental Probabilities, Left Flaperon Failure, ε = 50% 
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εεεFigure 20a: Elemental Probabilities, Left Flaperon Failure, ε = 75% 
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εεεFigure 20b: Elemental Probabilities, Left Flaperon Failure, ε = 75% 
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εεε Figure 21a: Elemental Probabilities, Right Flaperon Failure, ε = 0% 
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εεεFigure 21b: Elemental Probabilities, Right Flaperon Failure, ε = 0% 
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εεε Figure 22a: Elemental Probabilities, Right Flaperon Failure, ε = 25% 
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εεεFigure 22b: Elemental Probabilities, Right Flaperon Failure, ε = 25% 
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εεε Figure 23a: Elemental Probabilities, Right Flaperon Failure, ε = 50% 
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εεεFigure 23b: Elemental Probabilities, Right Flaperon Failure, ε = 50% 
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εεε Figure 24a: Elemental Probabilities, Right Flaperon Failure, ε = 75% 
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εεεFigure 24b: Elemental Probabilities, Right Flaperon Failure, ε = 75% 
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εεεFigure 25a: Elemental Probabilities, Rudder Failure, ε = 0%
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εεεFigure 25b: Elemental Probabilities, Rudder Failure, ε = 0% 
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εεε Figure 26a: Elemental Probabilities, Rudder Failure, ε = 25%
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εεεFigure 26b: Elemental Probabilities, Rudder Failure, ε = 25% 
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εεε Figure 27a: Elemental Probabilities, Rudder Failure, ε = 50%
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εεεFigure 27b: Elemental Probabilities, Rudder Failure, ε = 50% 
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εεε Figure 28a: Elemental Probabilities, Rudder Failure, ε = 75%
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εεεFigure 28b: Elemental Probabilities, Rudder Failure, ε = 75% 
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Figure 29: Elemental Probabilities, Angle of Attack Sensor Failure 
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Figure 30: Elemental Probabilities, Pitch Rate Sensor Failure 
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Figure 31: Elemental Probabilities, Normal Acceleration Sensor Failure 

115 



Figure 32: Elemental Probabilities, Roll Rate Sensor Failure 

116




Figure 33: Elemental Probabilities, Yaw Rate Sensor Failure 
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Figure 34: Elemental Probabilities, Lateral Acceleration Sensor Failure 
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5.3.2 Fully Functional Performance with Dither 

Figures 5 and 6 present the MMAE/FS detection performance on a fully functional 

aircraft, using the purposeful dither signal discussed in Section 2.4.3. In this research, the 

purposeful dither signal is inserted as a pilot command through the cockpit control stick and 

rudder pedals. The entire dither signal (pitch, roll, and yaw) is turned off when the pilot inputs a 

purposely commanded maneuver. Thus, as seen in the ‘Desired’ plot of each figure, there is full 

dither over 0-5 seconds, 10-15 seconds, and 20-24 seconds, but there is no dither over 5-10 

seconds and 15-20 seconds.  The ‘Desired’ pilot commanded maneuvers (the doublets and the 

long duration maneuver) are accomplished in the plane under test (pitch maneuvers for the pitch 

test and roll maneuvers for the roll test). It can be seen from both plots that the elemental 

probabilities initially indicate there are no failures in the aircraft, although the fully functional 

aircraft elemental filter probabilities show a downward trend from the beginning of the simulation 

as compared to the fully-functional aircraft hypotheses without dither in Figures 7 and 8. The 

aircraft modes (including unmodeled aircraft dynamics) are being excited by the dither signal, 

causing small amounts of probability to disperse to the failed sensor and actuator/surface failure 

hypotheses. From these figures, the elemental probability mostly moves into the sensor failure 

hypothesis filters in the pitch case and into the rudder failure channel in the roll case. Once the 

maneuver is initiated, the dither signal is removed and from these figures it can be seen that the 

elemental probability within the fully-functional hypothesis does not substantially change during 

the maneuver. After the pilot commanded maneuvers (pitch doublets), the elemental probability 

of the fully-functional aircraft hypothesis is reduced and the elemental probability within the 

failed sensor hypotheses increases. This is a result of the aircraft dynamics following the 

maneuver (such as long and short period aircraft dynamics) and the dither signal occurring at the 

same time, causing additional higher order aircraft dynamics not modeled in the failure 

hypotheses of the linear filters, resulting in false sensor failure detections. Figure 6 shows similar 

results but the elemental probability moves to the rudder failure hypothesis. This causes further 
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problems because false rudder failure declarations brought on by the application of the dither 

signal bring the CR algorithm online. At this point, the CR is causing the aircraft to maneuver 

even more during the period between pilot commanded maneuvers, worsening the detection 

performance of the MMAE/FS. These results show the need for time between the end of the 

pilot-commanded maneuver and the time to employ the purposeful dither signal. The purposeful 

dither does improve the detection of actual failures in a nonmaneuvering flight. The purposeful 

dither signal is not used in the rest of the simulations for this research effort. 

5.3.3 Fully Functional Performance without Dither 

Figures 7 and 8 show the performance of the MMAE/FS in a fully functional aircraft 

undergoing the pitch and roll maneuvers, respectively.  This is the same as portrayed in Figures 5 

and 6, but without dither at any time. These elemental probability plots also demonstrate 

detection problems at the end of the long duration maneuver when the aircraft is placed in a 

different attitude than straight-and-level. When the aircraft is in a different attitude than straight-

and-level, the current state (as detected by the sensors) does not match any of the linear models 

and appears to the MMAE/FS as a sensor failure, as can be seen at the end of the simulation in 

Figure 7. The sensors that appear to be the most sensitive to the change in attitude are the failure 

hypotheses based on pitch rate and the yaw rate sensors, as can be seen in Figure 10 for example. 

The elemental linear filters are based on the parameters for straight-and-level flight. This shows 

the need for model scheduling based not only on the dynamic pressure but also on aircraft attitude 

and nominal values. This same pattern can be seen in several of the other plots, particularly in the 

partial actuator failure plots.  The spawned filters used in the fully functional aircraft are from the 

partial left stabilator hypothesis (Bank 1 as mentioned earlier in Section 4.4.1). The bank number 

does not change through the fully functional aircraft simulations. 

By comparing Figures 5 and 6 to Figures 7 and 8, the detection problem at the end of the 

simulation can be seen to be considerably worse without the purposeful dither signal. The dither 

signal excites the aircraft modes and makes them more visible to the MMAE/FS. After the long 
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duration maneuver, the dither is applied to the case presented in Figures 5 and 6, whereas Figures 

7 and 8 do not have the dither signal applied. 

In comparing Figure 7 with Figure 8, it can be seen that false alarms on sensors is more 

severe with the pitch maneuvers than with the roll maneuvers. False partial actuator/surface 

failure alarms are worse with the roll maneuvers than with the pitch maneuvers. 

5.3.4 Detection Performance of Fully Failed Actuators/Surfaces other than the Rudder 

Figures 9, 13, 17, and 21 show the performance of the MMAE/FS used to detect full 

actuator failures of the stabilators and flaperons. In all cases, the MMAE/FS detects the failure 

during the first doublet maneuver and maintains the detection through the rest of the simulation. 

Figure 17, which portrays the left flaperon actuator failure simulation results, shows the elemental 

probability moving to the spawned filters during the long duration maneuver, and then the 

elemental probability returns to the correct failure hypothesis. This is caused by the direction of 

roll. In one direction, as in this case, the failure identifiability is decreased possibly because the 

other flaperon is providing a greater rolling force. The one flaperon can produce a greater rolling 

force because when the roll is begun, the sideslip angle increases, and since the rudder is also 

being used to achieve a coordinated turn, the aircraft does not roll solely on the longitudinal axis 

(axis from tail to the nose of the aircraft) but also rotates on the other axes (lateral and vertical 

axes). This geometry causes a greater rolling force on one flaperon as compared to the other 

flaperon. The other flaperon case is presented in Figure 21. This figure illustrates the same 

maneuver, including the same roll direction, but with the failure of the right flaperon actuator. In 

this case, the elemental probability flows to the correct failure hypothesis and remains there 

through the entire simulation, including the long duration maneuver. The flow of elemental 

probability to the spawned filter hypotheses in Figure 17 does not detract substantially from the 

MMAE/FS performance since the correct bank is used (the bank corresponding to a partial left 

stabilator actuator failure) and the “error” is primarily declaring ε to be 25% versus 0%. The 
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elemental probability movement to the spawned filter in Figure 17 between 16 and 20 seconds 

(particularly to the ε = 25% filter) caused by the roll maneuver does cause the estimates of 

effectiveness (both εhat and εmap) to increase from 0% effectiveness for a few seconds. Once the 

elemental probability flows back into the fully failed left flaperon hypothesis, both estimates of 

effectiveness return to the proper values. The same pattern can be seen in Figure 18 and Figure 

19. The 75 percent effectiveness case shown in Figure 20 does not show the same pattern, and 

that can be caused by the lack of failure identifiability with the 75% effectiveness case, as will be 

mentioned in Section 5.3.5.  In all the fully failed cases, the banks chosen by the MMAE/FS were 

the appropriate banks to use, based on the actual failure. 

At the end of the simulation, after the long duration maneuver, the problems caused by 

the aircraft being at a different attitude than straight-and-level can be seen. Figure 9a shows 

performance at the end of the simulation similar to that of Figure 7a with respect to the elemental 

probability moving from the fully failed left stabilator hypothesis (fully functional hypothesis in 

the case of Figure 7) to the pitch rate and normal acceleration sensor failure hypotheses. This 

also shows the need to have model scheduling based on aircraft attitude, as well as dynamic 

pressure. 

5.3.5 Detection Performance of Partially Failed Actuators/Surfaces 

The other figures among Figures 9-24 show the performance of the MMAE/FS in 

determining the correct partial actuator/surface failure condition and providing an estimate of 

actuator/surface effectiveness given partial actuator/surface failures. In the cases in which the 

partial actuator failure has true effectiveness of ε = 25% and 50%, the εhat provides a better 

estimate of actuator effectiveness than εmap (recall the discussion of εhat versus εmap in Section 

4.5.5), as can be seen in Figures 10, 11, 14, 15, 18, 19, 22, and 23. The εmap was designed to 

improve performance of the MMAE/FS with acceptably “subliminal” dithers but no purposeful, 
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large maneuvers. Although it yielded better performance under those conditions, apparently it 

does not for maneuvering flight. 

As mentioned before, after the long duration maneuver, the aircraft is in a different 

attitude than straight-and-level. This accounts for the difficulty of the MMAE/FS to maintain a 

good estimate of effectiveness after the long duration maneuver, as can also be seen from the 

aforementioned figures. The MMAE/FS has difficulty detecting and estimating the 75% effective 

actuator/surface cases, as can be seen in Figures 12, 16, 20, and 24. Since the aircraft is 

maneuvering, the failure identifiability is apparently reduced, as compared to the cases where 

enough failure identifiability exists to determine the 25% and 50% effectiveness cases as well as 

the fully failed case (0% effectiveness). This is not a major issue since a 75% effectiveness case 

(i.e., 25% failure) still leaves enough control authority to complete the desired maneuvers without 

CR, as will be shown later in this chapter. 

Figures 12 and 16 show the 75% effectiveness partial stabilator failure cases. From these 

plots, the change in attitude after the long duration pitch maneuver causes false pitch rate and 

normal acceleration sensor alarms. As mentioned before, the aircraft being in a different attitude 

than straight-and-level causes this. The εhat estimate shows approximately 100% effectiveness as 

mentioned earlier. Figures 20 and 24 show the 75% effectiveness partial flaperon failure cases. 

In these cases, it can be seen that, after the long duration roll maneuver, there are no false sensor 

failure alarms and the εhat estimate is approximately correct throughout the simulation. This 

shows that the elemental filters within the MMAE/FS are more sensitive to changes in pitch angle 

than in roll angle. 

Figures 9-12 and Figures 14-16 show the poor detection performance of the MMAE/FS 

after the long duration pitch maneuver when the aircraft is in a different attitude than straight-

and-level flight. This is similar to the MMAE/FS performance with no failures shown in Figure 

7.  This shows the requirement of model scheduling as a function of both aircraft attitude and 

dynamic pressure. It is also interesting to note that Figures 18-20 and Figures 22-24 do not show 
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the sensor failure false alarms. Based on this, the pitch angle appears to have a more dramatic 

impact on the linear models within the MMAE than roll angle. 

This research effort also includes the “combined” elemental probability plot, which is the 

combination of the probability assigned to the fully failed actuator/surface hypothesis with the 

elemental probabilities of the spawned filters. This is computed to improve the detection 

performance of the MMAE/FS during partial actuator/surface failures. A good example of the 

benefits of the “combined” channel is shown in Figure 22, the right flaperon partial failure 

(ε = 25%). In this case, if the “combined” channel probability is not used to declare the partial 

actuator/surface failure, then the failure declaration would take place at approximately 11 seconds 

into the simulation.  With the “combined” channel used, the partial failure declaration is made at 

approximately 6 seconds. Since the CR is using the declaration from the MMAE/FS to apply the 

proper redistributive control to the aircraft, the CR must be activated as early as possible in the 

maneuver. This allows the MMAE/FS to react faster to partial actuator/surface failures than 

looking at each failure hypothesis individually; this was the intention all along, any time there are 

spawned filters (which, in this simulation, is always). 

5.3.6 Detection Performance of the Complete and Partial Rudder Failures 

Figures 25, 26, 27, and 28 show the poor performance of the MMAE/FS in detecting 

complete and partial rudder actuator/surface failures. This is in part caused by the lack of a yaw 

maneuver, resulting in reduced failure identifiability for the rudder. The CR is also used in these 

cases in order to keep the aircraft with an actuator failure close to the original trimmed flight 

conditions. Since there is not enough control authority in the other flight control actuators to 

compensate for a failed rudder, the CR cannot maintain good control over the aircraft with a 

rudder failure. This then causes even worse detection failure detection performance by the 

MMAE/FS. This will be further explained later in this chapter. The elemental probability flows 

to the correct hypothesis (rudder failure) but also some elemental probability flows to the right 
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stabilator fully failed hypothesis. This also causes the bank to be swapped, bringing online other 

spawned filters based on partial stabilator failures before swapping back to the correct bank 

representing partial rudder failures. 

5.3.7 Detection Performance of Complete Sensor Failures 

Finally, Figures 29 – 34 show the capability of the MMAE/FS to detect sensor failures 

during maneuvering flight. The elemental probability plots of the spawned filters and the 

estimates of effectiveness are left out since they show no information about the MMAE/FS 

detection capability in detecting sensor failures. In actual implementation, the spawned filters 

would not be brought online for a sensor failure and the MMAE/FS does not provide an estimate 

of sensor effectiveness. The first figures represent the longitudinal sensors (Figures 29-31) and 

the pitch maneuver is used to excite the aircraft in order for the MMAE/FS to detect these sensor 

failures. The last figures represent the lateral sensors (Figures 32-34) and the roll maneuver is 

used to excite the aircraft in order for the MMAE/FS to detect these sensor failures. In all cases, 

the sensor failures were detected by the MMAE/FS during the first doublet maneuver and the 

detection was maintained through the entire simulation. The two problems found in the sensor 

failure detection capability of the MMAE/FS during pilot commanded maneuvers are the normal 

acceleration sensor failure and the pitch rate and yaw rate sensor failure cases which are 

described below. 

Figure 31 shows the elemental probability plots given the case of a normal acceleration 

sensor failure. The sensor failure is properly detected by the MMAE/FS but then, after the pitch 

doublet maneuver, the elemental probability flows to the hypothesis based on the lateral 

acceleration sensor failure. This elemental probability flow is then reversed at the onset of the 

long duration pitch maneuver. This elemental probability flow is caused by the lack of failure 

mode excitement. As the aircraft does not maneuver after the completion of the pitch doublet, the 

MMAE/FS has a difficult time maintaining the detection capability of the normal acceleration 
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sensor. Once the long duration pitch maneuver is begun, enough failure mode identifiability 

exists for the MMAE/FS to identify the correct sensor failure clearly. This type of elemental 

probability flow is one of the factors for the dither timing (how long after a maneuver is 

completed to apply the purposeful dither signal in order to excite the failure modes, to maintain 

good failure detection performance of the MMAE/FS). 

As mentioned earlier in this chapter, the effect of being at a different attitude than 

straight-and-level flight can be seen in the MMAE/FS ability to maintain detection of the pitch 

rate and yaw rate sensor failures, as shown in Figures 30 and 32 at the end of the simulation. By 

implementing model scheduling based on aircraft attitude, as well as dynamic pressure, the ability 

of the MMAE/FS to maintain detection capabilities through large pilot commanded maneuvers 

could be increased. 

5.4 Control Redistribution Performance 

5.4.1 Control Redistribution 

Once an actuator failure is detected and an estimate of the effectiveness is made by the 

MMAE/FS, the proper control must be applied in order to achieve the desired performance. The 

following state value plots demonstrate the capability of the MMAE/FS/CR to apply the proper 

control once a full actuator failure is detected. The longitudinal plots are of the state values of 

pitch angle (θ in degrees), pitch rate (q in degrees per second), angle of attack (α in degrees), 

normal acceleration (an in ‘g’s’), velocity (feet per second) and altitude (feet). The lateral plots 

are of the state values of roll angle (φ in degrees), roll rate (p in degrees per second), yaw rate (r 

in degrees per second), slipstream angle (β in degrees), and normal acceleration (ay in ‘g’s’). The 

angle of attack, pitch rate, normal acceleration, roll rate, yaw rate, and lateral acceleration are 

states in the MMAE/FS models. The state value plots are presented for the cases in the following 

order: 
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1. Fully Functional Aircraft 
2. Left Stabilator Failure 
3. Partially Failed Left Stabilator 
4. Right Stabilator Failure 
5. Partially Failed Right Stabilator 
6. Left Flaperon Failure 
7. Partially Failed Left Flaperon 
8. Right Flaperon Failure 
9. Partially Failed Right Flaperon 
10. Rudder Failure 
11. Partially Failed Rudder 

The dotted line on each state value plot represents the fully functional performance of 

the aircraft. The solid line on each of the state value plots represent the mean performance of the 

aircraft given the failures and controlled by the CR. The mean ± 1 standard deviation is not 

shown because the standard deviation of the states is too small to show. In these plots, the true 

value of effectiveness, εtrue, is used rather than the MMAE-estimated value, to evaluate the best 

control performance achievable through a CR algorithm, assuming perfect identification of failure 

status. Subsequently in Section 5.5, the performance of an actually implementable 

MMAE/FS/CR algorithm will be compared to this artificially informed algorithm’s performance. 

As was the case before, the “desired” plots show the desired pilot-commanded maneuver in 

pounds of force on the cockpit control stick. 

Figures 35-56 on CR performance are presented in a group for convenience. Then, 

starting on page 150, they will be discussed in detail. 
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Figure 35: State Values, Fully Functional Aircraft, Pitch Maneuver 
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Figure 36: State Values, Fully Functional Aircraft, Roll Maneuver 
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εεεFigure 37: State Values, Left Stabilator Failure, ε = 0% 
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εεεFigure 38: State Values, Left Stabilator Failure, ε = 25% 
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εεεFigure 39: State Values, Left Stabilator Failure, ε = 50% 
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εεεFigure 40: State Values, Left Stabilator Failure, ε = 75% 
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εεεFigure 41: State Values, Right Stabilator Failure, ε = 0% 
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εεεFigure 42: State Values, Right Stabilator Failure, ε = 25% 
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εεεFigure 43: State Values, Right Stabilator Failure, ε = 50% 
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εεεFigure 44: State Values, Right Stabilator Failure, ε = 75% 
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εεεFigure 45: State Values, Left Flaperon Failure, ε = 0% 
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εεεFigure 46: State Values, Left Flaperon Failure, ε = 25% 
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εεεFigure 47: State Values, Left Flaperon Failure, ε = 50% 
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εεεFigure 48: State Values, Left Flaperon Failure, ε = 75% 
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εεεFigure 49: State Values, Right Flaperon Failure, ε = 0% 
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εεεFigure 50: State Values, Right Flaperon Failure, ε = 25% 
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εεεFigure 51: State Values, Right Flaperon Failure, ε = 50% 
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εεεFigure 52: State Values, Right Flaperon Failure, ε = 75% 
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εεεFigure 53: State Values, Rudder Failure, ε = 0% 
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εεεFigure 54: State Values, Rudder Failure, ε = 25% 
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εεεFigure 55: State Values, Rudder Failure, ε = 50%
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εεεFigure 56: State Values, Rudder Failure, ε = 75% 
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5.4.2 Control Redistribution Performance with Fully Functional Aircraft 

Figures 35 and 36 present the fully functional aircraft cases for the pitch and roll 

maneuvers, respectively.  These maneuvers are used as a baseline for the other figures 

representing the failure cases. The pitch maneuver is used for the longitudinal actuator failure 

cases (stabilators) and the roll maneuver is used for the lateral actuator failure cases (flaperons 

and rudder). It can be seen from Figures 35 and 36 that the fully functional aircraft state values 

are not exactly zero (or their nominal cases such as in angle of attack). The lateral state 

oscillations during the pitch maneuver in Figure 35, and the longitudinal state oscillations in 

Figure 36 are caused by the Block 40 Flight Control System (FCS) and are small in magnitude, as 

can be seen by the axis magnitudes. The large oscillations in the lateral states in Figure 36 are 

purposeful and are large in magnitude as compared to the lateral oscillations from Figure 35. It is 

important in review these figures (and all figures) to take note of the y- axis scale. In Figure 36, 

the aircraft looses altitude and gains airspeed at the end of the simulation. This is caused by the 

lack of autopilot control over the aircraft.  As the aircraft rolls to approximately 40 degrees of 

bank, the nose of the aircraft drops since there is not backpressure on the pilot control stick 

applied and the autopilot system is not used. 

5.4.3 Control Redistribution Performance with Full Actuator/Surface Failures other than the 
Rudder 

The performance of the CR algorithm given complete actuator failures is shown in 

Figures 37, 41, 45, and 49 for the stabilator and flaperon failures.  Once the failure is declared by 

the MMAE/FS, the CR algorithm is activated based on the failure declaration and these figures 

show the control performance of the CR algorithm.  The effectiveness εtrue is used in the CR 

algorithm in all cases when that algorithm becomes activated, in order to demonstrate the best 

possible control given the exact value of failure effectiveness. In all the failure cases, the largest 

variation from the desired maneuver pitch and roll angles is approximately one to two degrees. 

The delays are caused mostly by the time the MMAE/FS requires to make the initial declaration. 
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Figure 37 clearly shows this. This is the completely failed left stabilator case. The aircraft begins 

the doublet maneuver and the aircraft begins to roll, as can be seen in the lateral states. The 

MMAE/FS then makes the failure declaration and the CR algorithm is brought online. At that 

point, the roll stops at less than one degree and does not increase through the rest of the 

simulation. It can be seen, for instance from Figure 37, that the dotted line representing the 

desired pitch maneuver performance matches Figure 35, once one notes the scale change on the 

plots. The same is true for the roll maneuvers and Figure 36. 

5.4.4 Control Redistribution Performance with Partial Actuator/Surface Failures 

The partial actuator failure performance is presented in Figures 38 - 40, 42 - 44, 46 - 48, 

and 50 - 52 for the stabilator and flaperon partial failures. From these figures, it can be seen that 

the CR algorithm functions properly, given the failure declaration from the MMAE/FS and 

knowing the effectiveness of the partially failed actuator/surface exactly.  The aircraft tracks the 

desired maneuver with little deviation. The only times the aircraft does not track the desired 

maneuvers properly is after the long duration maneuver. This is caused by the poor detection 

performance of the MMAE/FS while at a different aircraft attitude than straight-and-level. 

Consistent with the results seen in Section 5.3, this leads to a strong recommendation later in 

Chapter 6 that model scheduling be based on both dynamic pressure and aircraft attitude, and not 

just dynamic pressure as in these simulations. Since the MMAE/FS does not make the correct 

failure declaration while at the different aircraft attitude, the CR does not apply the proper control 

to the vehicle. This can be clearly seen in Figure 48, the 75% effective left flaperon failure case. 

The control is appropriate to track the desired maneuver until the completion of the long duration 

maneuver, when the aircraft is in a different attitude. At this point in this case, the MMAE/FS 

does not make the proper failure determination, causing the application of incorrect control by the 

CR.  The cause of the jump in roll angle at the end of the simulation in Figure 48 is caused by the 

lack of proper control over the aircraft. The aircraft does not roll as fast with the partially failed 
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left stabilator and the CR is not applying correct control at that time because the MMAE/FS is not 

declaring the left flaperon failure. Since the aircraft is not rolling as fast but the flight control 

system is being ‘told’ that all its actuator/surface commands are being followed, the Block 40 

Flight Control System (FCS) is alerted to the lack of proper control through the MMAE estimates 

of the sensor measurements. Detecting that the aircraft is not rolling as fast as commanded, the 

Block 40 FCS increases the gain to the flaperons, causing the aircraft roll angle to jump 

momentarily. 

5.4.5 Control Redistribution Performance with Rudder Failures 

Figures 53 through 56 represent the CR attempt to control the aircraft given various 

rudder actuator failures. The aircraft does not have enough control authority in the fully 

functional flight control actuators to compensate for the failed rudder. The CR applies maximum 

control to the other flight control surfaces, resulting in large deviations from the desired roll 

maneuver. This maneuvering also affects the MMAE/FS because the rapid maneuvering caused 

by the saturated stabilator and flaperon channels adds unmodeled dynamics to the aircraft, 

violating the linear model approximations of the failure hypotheses elemental filters. 

5.5 MMAE/FS/CR Combined Performance 

5.5.1 Combined MMAE/FS/CR 

The performance of the complete MMAE/FS/CR is presented here. In the previous 

sections, the effectiveness value, ε, is treated as a known value in order to present the 

performance of the MMAE/FS and the CR separately. In this section, the ε value estimated by 

the MMAE/FS is directly used in the CR.  Based on the analysis between εmap and εhat presented 

in Section 5.3.5, the more accurate estimate of εhat is used. Although εmap was found to be 

preferable for the case of no maneuvering with dither inputs, εhat appears to be more suitable for 

the case of a maneuvering aircraft without purposeful, additional dithering inputs. The elemental 
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probability and state value plots are presented in the same order as above for actuator failures. 

Sensor failures are not presented for this case since they are not affected by the estimate of 

effectiveness. The solid lines show the mean values in the elemental probability plots and show 

the mean performance of the CR in the state value plots. The dashed lines represent the mean ± 

one standard deviation in the elemental probability plots and shows the desired values of the fully 

functional aircraft in the state value plots. 

Figures 57-76 on MMAE/FS/CR combined performance are now presented as a group for 

convienence. Then, starting on page 214, they will be discussed in detail. 
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εεε εεεFigure 57a: Elemental Probabilities, Left Stabilator Failure, ε = 0% Using ε HAT 
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εεε εεεFigure 57b: Elemental Probabilities, Left Stabilator Failure, ε = 0% Using ε HAT 
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εεε εεεFigure 57c: State Values, Left Stabilator Failure, ε = 0% Using ε HAT 
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εεε εεε Figure 58a: Elemental Probabilities, Left Stabilator Failure, ε = 25% Using ε HAT 
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εεε εεεFigure 58b: Elemental Probabilities, Left Stabilator Failure, ε = 25% Using ε HAT 
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εεε εεεFigure 58c: State Values, Left Stabilator Failure, ε = 25% Using ε HAT 
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εεε εεεFigure 59a: Elemental Probabilities, Left Stabilator Failure, ε = 50% Using ε HAT 
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εεε εεεFigure 59b: Elemental Probabilities, Left Stabilator Failure, ε = 50% Using ε HAT 
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εεε εεεFigure 59c: State Values, Left Stabilator Failure, ε = 50% Using ε HAT 
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εεε εεεFigure 60a: Elemental Probabilities, Left Stabilator Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 60b: Elemental Probabilities, Left Stabilator Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 60c: State Values, Left Stabilator Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 61a: Elemental Probabilities, Right Stabilator Failure, ε = 0% Using ε HAT 
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εεε εεεFigure 61b: Elemental Probabilities, Right Stabilator Failure, ε = 0% Using ε HAT 
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εεε εεεFigure 61c: State Values, Right Stabilator Failure, ε = 0% Using ε HAT 
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εεε εεεFigure 62a: Elemental Probabilities, Right Stabilator Failure, ε = 25% Using ε HAT 
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εεε εεεFigure 62b: Elemental Probabilities, Right Stabilator Failure, ε = 25% Using ε HAT 
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εεε εεε Figure 62c: State Values, Right Stabilator Failure, ε = 25% Using ε HAT 
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εεε εεεFigure 63a: Elemental Probabilities, Right Stabilator Failure, ε = 50% Using ε HAT 
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εεε εεεFigure 63b: Elemental Probabilities, Right Stabilator Failure, ε = 50% Using ε HAT 
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εεε εεε Figure 63c: State Values, Right Stabilator Failure, ε = 50% Using ε HAT 
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εεε εεεFigure 64a: Elemental Probabilities, Right Stabilator Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 64b: Elemental Probabilities, Right Stabilator Failure, ε = 75% Using ε HAT 
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εεε εεε Figure 64c: State Values, Right Stabilator Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 65a: Elemental Probabilities, Left Flaperon Failure, ε = 0% Using ε HAT 
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εεε εεεFigure 65b: Elemental Probabilities, Left Flaperon Failure, ε = 0% Using ε HAT 

179




εεε εεεFigure 65c: State Values, Left Flaperon Failure, ε = 0% Using ε HAT 
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εεε εεεFigure 66a: Elemental Probabilities, Left Flaperon Failure, ε = 25% Using ε HAT 
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εεε εεεFigure 66b: Elemental Probabilities, Left Flaperon Failure, ε = 25% Using ε HAT 
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εεε εεεFigure 66c: State Values, Left Flaperon Failure, ε = 25% Using ε HAT 
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εεε εεεFigure 67a: Elemental Probabilities, Left Flaperon Failure, ε = 50% Using ε HAT 
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εεε εεεFigure 67b: Elemental Probabilities, Left Flaperon Failure, ε = 50% Using ε HAT 
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εεε εεεFigure 67c: State Values, Left Flaperon Failure, ε = 50% Using ε HAT 
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εεε εεεFigure 68a: Elemental Probabilities, Left Flaperon Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 68b: Elemental Probabilities, Left Flaperon Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 68c: State Values, Left Flaperon Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 69a: Elemental Probabilities, Right Flaperon Failure, ε = 0% Using ε HAT 
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εεε εεεFigure 69b: Elemental Probabilities, Right Flaperon Failure, ε = 0% Using ε HAT 
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εεε εεεFigure 69c: State Values, Right Flaperon Failure, ε = 0% Using ε HAT 
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εεε εεεFigure 70a: Elemental Probabilities, Right Flaperon Failure, ε = 25% Using ε HAT 
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εεε εεεFigure 70b: Elemental Probabilities, Right Flaperon Failure, ε = 25% Using ε HAT 

194




εεε εεεFigure 70c: State Values, Right Flaperon Failure, ε = 25% Using ε HAT 
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εεε εεεFigure 71a: Elemental Probabilities, Right Flaperon Failure, ε = 50% Using ε HAT 
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εεε εεεFigure 71b: Elemental Probabilities, Right Flaperon Failure, ε = 50% Using ε HAT 
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εεε εεεFigure 71c: State Values, Right Flaperon Failure, ε = 50% Using ε HAT 
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εεε εεεFigure 72a: Elemental Probabilities, Right Flaperon Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 72b: Elemental Probabilities, Right Flaperon Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 72c: State Values, Right Flaperon Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 73a: Elemental Probabilities, Rudder Failure, ε = 0% Using ε HAT 
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εεε εεεFigure 73b: Elemental Probabilities, Rudder Failure, ε = 0% Using ε HAT 
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εεε εεεFigure 73c: State Values, Rudder Failure, ε = 0% Using ε HAT 

204




εεε εεεFigure 74a: Elemental Probabilities, Rudder Failure, ε = 25% Using ε HAT 
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εεε εεεFigure 74b: Elemental Probabilities, Rudder Failure, ε = 25% Using ε HAT 
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εεε εεε Figure 74c: State Values, Rudder Failure, ε = 25% Using ε HAT
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εεε εεεFigure 75a: Elemental Probabilities, Rudder Failure, ε = 50% Using ε HAT 
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εεε εεεFigure 75b: Elemental Probabilities, Rudder Failure, ε = 50% Using ε HAT 

209




εεε εεε Figure 75c: State Values, Rudder Failure, ε = 50% Using ε HAT
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εεε εεεFigure 76a: Elemental Probabilities, Rudder Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 76b: Elemental Probabilities, Rudder Failure, ε = 75% Using ε HAT 
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εεε εεεFigure 76c: State Values, Rudder Failure, ε = 75% Using ε HAT
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5.5.1 MMAE/FS/CR Performance with Full Actuator/Surface Failures 

These figures show the performance of the MMAE/FS/CR used to detect and estimate 

flight control actuator failures and apply the appropriate control to achieve the desired control 

performance. In Section 5.4, the best achievable CR performance was analyzed showing the 

control performance based on the MMAE/FS used to detect the failure and εtrue used by the 

artificially informed CR algorithm. In this case, the εtrue is replaced by εhat as estimated by the 

MMAE/FS. It is seen from these figures that the MMAE/FS/CR is able to track the desired 

maneuver properly in most cases. 

The MMAE/FS/CR is affected as before by the lack of linear models representing the 

change in aircraft attitude. This is even more important in this case, since the models are used 

also to determine the estimate of effectiveness driving the CR algorithm. In the cases of complete 

actuator failures shown in Figures 57, 61, 65, and 69, the εhat value is correct through most of the 

simulation, leading to the proper redistribution of control by the CR algorithm.  This can be seen 

in the state value plots of these figures.  At the end of the simulation, these figures also show the 

degradation of control from that seen in Section 5.4 caused by the poor εhat estimate due to the 

change in attitude. 

5.5.2 MMAE/FS/CR Performance with Partial Actuator/Surface Failures other than Rudder 

The partial actuator failures shown in Figures 58 - 60, 62 - 64, 66 - 68, and 70 - 72 show 

the change in attitude effects clearly. The elemental probabilities show the poor performance at 

the end of the simulation with the aircraft in a different attitude than used for the elemental filter’s 

design (i.e., straight-and-level), and the state value plots show the degradation of CR performance 

due to the MMAE/FS estimates. This clearly shows the need for model scheduling based on the 

attitude of the aircraft, as well as on dynamic pressure. 

The partial actuator failures also show improved εhat estimation performance in the 75% 

failure cases shown in Figures 60, 64, 68, and 72 in comparison to the εhat estimation performance 

214




from Section 5.3. This is most probably due to the additional maneuvering based on εhat changing 

in this case, as opposed to the constant εtrue value used in Section 5.3. Since εhat changed in this 

case, the CR based on the MMAE/FS-produced εhat value causes the aircraft to maneuver slightly 

more, making the 75% effectiveness case identifiable to the MMAE/FS. 

The partial stabilator actuator failures also show a constant roll rate once the CR 

algorithm is initiated. This roll rate can be seen in Figures 58 - 60 and 62 - 64. This is caused by 

the mechanical biases in the simulation. The stabilators and flaperon positions are not equal to 

zero during straight-and-level flight due to the design of the aircraft. The difference between the 

zero position and the flight surface position during straight-and-level flight, for this research, is 

the mechanical bias. The CR uses the εhat to account for these biases, but if the εhat is not exact, 

then some of the bias will remain and cause the aircraft to roll as shown in these figures. In 

Section 5.4, this adverse roll was not present in the state value plots given partial stabilator 

failures because the εtrue was used instead of the MMAE/FS estimate εhat. 

In Figures 67 and 71, it can be seen from the roll angle in the state value plots that the roll 

angle jumps across the desired control performance (fully-functional aircraft performance). This 

is caused by the inaccurate estimation of the partial actuator/surface failure effectiveness by the 

MMAE/FS. Since the estimate of effectiveness is not correct, the control applied to the aircraft is 

not the appropriate control for the failure conditions. As a result, the Block 40 Flight Control 

System (FCS), through the MMAE reconstructions of the sensor measurements (best estimates of 

sensed variables as if there were no sensor failures), detects the lack of good control performance. 

The Block 40 FCS then increases the gain in the flaperon channels, resulting in the jump in the 

roll angle state value. Even though the state value jumps, the overall performance is similar to 

the fully-functional aircraft performance with respect to the state values. 
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5.5.3 MMAE/FS/CR Performance with Rudder Failures 

The rudder failure cases also showed performance similar to the results obtained in 

Section 5.4.  Since the control authority required could not be achieved with the remaining 

control surfaces on the aircraft, the remaining control surfaces were driven to saturation, resulting 

in the poor control performance of the CR algorithm.  This can be seen in Figures 72 - 74. It is 

interesting to note that in Figure 75, the 75% effective partial rudder failure case, enough control 

authority remained to track the desired maneuvers properly. The jumps in the roll angle state 

values are caused by the Block 40 FCS detecting the lack of appropriate control (in this case, 

caused by the lack of control authority), as mentioned in the partial actuator/surface failure case. 

Unfortunately, this is not a true representation of the performance of the CR, since the reason the 

CR does a decent job of following the desired maneuver is because the εhat is incorrect from the 

MMAE/FS. The errors in εhat are brought on by the attitude changing, altering the redistribution 

gains, which then do not drive the actuators into saturation.  Section 5.4 shows the performance 

of the 75% rudder partial actuator failure with εtrue and there is not enough control authority to 

achieve the desired maneuvers using CR. 

5.6 Chapter Summary 

This chapter demonstrated the performance of the MMAE/FS to detect full and partial 

actuator failures and complete sensor failures. This chapter also demonstrates the shortcomings 

of the current design of the MMAE/FS and suggests some possible solutions to enhance the 

detection capability, such as model scheduling based on aircraft attitude, as well as on dynamic 

pressure. This section also demonstrated the control performance of the CR to apply proper 

control to an aircraft with a fully or partially failed actuator in order to accomplish a desired 

maneuver, in the case in which the effectiveness of the partially failed actuator/surface is 

artificially assumed to be known perfectly, in order to demonstrate the best performance one 
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could hope to achieve from the CR algorithm.  Finally, this chapter presented the complete 

MMAE/FS/CR algorithm and its ability to detect complete and partial failures and estimate the 

effectiveness of the partial failures, and using this information to apply CR to correct for the 

failed actuators in order to accomplish a desired maneuver. 
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Chapter 6 - Conclusions and Recommendations 

6.1 Chapter Introduction 

This chapter presents the conclusions and recommendations for this research effort based 

on the achieved results. Section 6.2 presents the conclusions based on the failure detection 

performance of the MMAE/FS, while Section 6.3 presents the conclusions based on the control 

redistribution performance of the CR. Section 6.4 presents future applications of this research in 

the fields of Uninhabited Aerial Vehicles (UAVs). Finally, Section 6.5 presents the 

recommendations for further research in this field. 

6.2 Failure Detection Conclusions 

The results of this research effort have shown the need for model scheduling based on 

dynamic pressure and aircraft attitude. The performance of the MMAE/FS can also be improved 

by making the elemental filters’ dynamic noise strength and measurement noise covariance (Q 

and R) matrices adaptive to the maneuvers encountered.  These additions will greatly increase the 

capability of the MMAE/FS to detect failures while undergoing pilot commanded maneuvers. 

This enhanced detection is important, especially in the case of partial failures. It can be seen 

from the results that, due to the less accurate estimations of effectiveness, the proper control was 

not always applied. If the linear models are enhanced, then the MMAE/FS will provide better 

estimates during partial actuator failures. The results of this research effort have also shown the 

detection performance using a purposeful set of pilot induced commands. 

The application of the MMAE/FS to detect failures while maneuvering can benefit from 

adaptive Q and R matrices.  In this research, the original Q and R matrix values [11,12] are used. 

These values were determined based on non-maneuvering flight. During maneuvering flight, 

unmodelled dynamics can appear in the residuals. These unmodeled dynamics can appear as 

sensor failures, causing false declarations. One method of solving this problem is to change the 
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Q and R matrix values to compensate for the maneuver [18,19,29]. The Q matrix is changed in 

order to compensate for the changing aircraft attitude, since the models are based on straight-and-

level flight conditions, and thus the problem is inadequacies of the assumed linear perturbation 

dynamics model. The R matrix is changed in order to compensate for the sensors detecting the 

unmodelled dynamics. Once the maneuver is completed, the Q and R matrices may be returned 

to their original values in order to improve the detection of failures. By using this method, failure 

detection and estimation of the MMAE/FS can be improved, which also improves the estimate of 

effectiveness in the case of partial actuator failures, allowing for better CR response. 

The current research has also shown the need for model scheduling based on the dynamic 

pressure and attitude of the aircraft. The model scheduling based on dynamic pressure has been 

added in this research effort and has been shown to enable the MMAE/FS to detect failures and 

maintain good estimation capabilities while transitioning the flight envelope (changing of both 

airspeed and altitude). Previous research efforts [9,10] showed that even small deviations in 

dynamic pressure incapacitate the failure detection capability of the MMAE. It can also be seen 

from this research that, when the aircraft is in a different attitude than straight-and-level, the 

elemental filters based on the straight-and-level flight condition no longer produce good failure 

detection and estimation capabilities. This demonstrates the need for model scheduling based not 

only on dynamic pressure, but also on the attitude of the aircraft. 

An alternative method for improving the performance of the MMAE/FS to detect failures 

besides a purposeful dither signal is the application of pilot-induced maneuvers. In previous 

research [11,12], dither is used to excite the aircraft to allow the MMAE/FS to detect failures in 

the absence of pilot-commanded maneuvers. The design problem with the dither signal is having 

a large enough command magnitude to detect failures while remaining subliminal to the pilot.  An 

alternative to using the dither signal is using a set of automated commands initiated by the pilot to 

check the failure status of the aircraft. Since the pilot initiates the commands, there is no need for 

the commanded maneuvers to remain subliminal. This allows larger command magnitudes to be 
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used to increase the failure status identifiability of the MMAE/FS. Both methods can also be 

combined in implementation. The dither signal can be used to detect failures automatically, while 

giving the pilot the capability to initiate the automated sequence of commands to detect and 

identify failures not detected using the subliminal dither signal. 

6.3 Control Redistribution Conclusions 

This research showed the ability of the CR to apply the correct alteration to the Block 40 

flight control system commands in order to achieve a desired maneuver in the face of 

actuator/surface failures. The CR tracked the desired maneuver in most cases with the 

MMAE/FS used to declare actuator/surface failures and when the effectiveness of a partially 

failed surface is exactly known. The case where the effectiveness of a partially failed surface is 

exactly known is used to demonstrate the best possible control capability of the CR. The CR has 

shown its capability to maintain desired control while using long duration maneuvers and while 

transitioning the flight envelope. The CR is extremely dependent upon the effectiveness in the 

case of partial failures, as can be seen in the results when the MMAE/FS provide both the 

declaration of an actuator/surface failure and the estimate of actuator/surface effectiveness. In 

order to achieve the desired performance from the CR, the MMAE/FS or other algorithm used for 

the detection and estimation of actuator failures must supply a reliable and accurate declaration of 

actuator failure and estimate of actuator effectiveness. 

One point where the CR cannot apply the appropriate control is in the case of rudder 

failures as shown in Section 5.3.6. Since the F-16 aircraft only has one rudder, the other flight 

control surfaces must work extremely hard in order to achieve the desired performance given a 

rudder failure. In this case, the other control surfaces do not provide enough control authority to 

compensate for the rudder failure. Since the Block 40 flight control system is being told that it is 

working with a fully functional aircraft, detecting the lack of yaw caused by the failed rudder, 

increases the gain to the rudder. This gain is redistributed to the other surfaces but even with full 
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detection, the desired yaw moment is not achieved. One method of handling this case in actual 

implementation is not to apply CR to the rudder failure case. The pilot should be alerted to the 

rudder failure. This procedure is acceptable in the view of this author because the rudder control 

is not essential for this type of aircraft. In other aircraft that have two vertical stabilators with two 

rudders, CR should be employed in the case of a single rudder failure since another redundant 

flight control surface is available. 

The CR performance is heavily dependent on the algorithm used for failure detection and 

partial actuator/surface estimate of effectiveness (in this research, the MMAE/FS).  If the 

declaration from the detection algorithm is not correct (false declaration or no declaration), or if 

the estimate of actuator/surface effectiveness is not accurate, the CR will not apply the proper 

control to accomplish the desired pilot-commanded maneuver. Unfortunately, as shown in this 

research, if the proper control over the aircraft is not accomplished, the Block 40 Flight Control 

System (FCS) will detect it through the estimates of the sensor measurements and improperly 

increase the command magnitudes to the actuators/surfaces in an effort to achieve the desired 

performance. The Block 40 FCS is unaware of the actuator/surface failure and the increase in 

command magnitude is redistributed, causing a jump in the state values. In this research, the 

jumps in state values particularly occurred in the roll angle state values and were typically less 

than a ten-degree jump in roll angle. The pilot will notice this but the jump in roll angle will not 

damage the aircraft. A method that might solve this problem is to redefine the redistribution 

matrix using the weighted pseudoinverse [23] rather than the unweighted pseudoinverse as used 

in previous research [32,33]. With the weighted pseudoinverse, penalties in the form of a cost 

function can be placed on the use of operating control surfaces used to compensate for the failed 

control surface. In the case of a flaperon failure, it may be beneficial to use the stabilators 

(differentially) rather than the rudder. This can be done by increasing the cost of using the rudder 

with respect to the cost of using the stabilators in the weighted pseudoinverse cost function. 
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Using the weighted pseudoinverse gives the designer more control over which flight control 

surfaces are used to compensate for a failed flight control surface. 

Two methodologies of partial actuator failure control are examined here. The first 

method is simply to increase the gain to the partially failed actuator and the second method is to 

apply CR based on the effectiveness of the partially failed actuator. These methods are discussed 

in Section 4.5.4 and the later control logic (CR) is used based on that discussion. The first 

method results in the aircraft perfectly following a desired maneuver assuming there is enough 

control authority left in the partially failed actuator/surface. For example, if an actuator has an 

ε = 25%, increasing the gain by a factor of four to achieve the desired maneuver might not be 

possible. The issue with simply increasing the gain to the partially failed actuator/surface is that 

the exact reason for the failure may not be known and increasing the gain could cause more 

problems with the aircraft, including disabling other flight control actuators/surfaces. An 

example of this case is a hydraulic leak on an actuator. If the gain is increased to the 

actuator/surface, this could cause the hydraulic leak to drain the hydraulic fluid from the aircraft 

which then disables other flight control actuators. In the opinion of the author, the best method to 

handle partial failures based on current aircraft technology is through the use of CR as shown in 

the results. The CR still uses the partially failed actuator but does not increase the gain to that 

actuator so as not to cause potentially further damage to the aircraft. Increasing the gain to 

compensate for a partial actuator failure may be appropriate for some aircraft, such as fly-by-

power aircraft in which electronic servomotors are used to drive the flight control surface. 

There are some of limitations of CR. These include the drag induced by the control 

redistribution and the control authority.  CR uses other functional actuators to compensate for a 

failed actuator. By using other actuators, the amount of induced drag created by the flight control 

surfaces is increased. This is a limitation since now more thrust is required in order to 

compensate for the increased application of control surfaces. Another limitation of the CR is the 

control authority required to compensate for a failed actuator. In this research, simple pitch and 
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roll commands are used to show the performance of the CR.  In actual use, combined large pitch 

and roll commands are employed. This can quickly overwhelm the CR with a complete actuator 

failure. There may not be enough control authority in these cases to provide proper control of the 

aircraft given a complete actuator failure. This is especially important in the case of multiple 

actuator failures. 

6.4 Applications for UAV 

Through this and previous research efforts, the MMAE/FS/CR has been shown to detect 

complete and partial flight control actuator failures and complete sensor failures without direct 

pilot interaction.  The MMAE/FS has been shown to detect failures in both the flight control 

actuators/surfaces and sensors. In the case of partial flight control actuator/surface failures, the 

MMAE/FS creates an estimate of effectiveness, as well as the failure declaration. The declaration 

and estimate of effectiveness are then passed to the CR algorithm to redistribute the control 

authority properly to other operational flight control actuators/surfaces to compensate for a 

completely or partially failed flight control actuator/surface. The MMAE/FS is implemented 

without changing the air vehicle’s flight control system. The sensor information is used to update 

the MMAE/FS, and then the MMAE/FS produces a state estimate, which is fed into the flight 

control system. This information, with the pilot commands, is also used to determine sensor and 

flight control actuator failures. The CR algorithm is implemented at the output of the onboard 

flight control system and adjusts the surface commands produced by the flight control system in 

order to redistribute the commands to operational flight control actuators in the case of partial or 

complete flight control actuator failures. The MMAE/FS/CR algorithm has been proven through 

various flight conditions and failure cases, and the actual implementation of the MMAE/FS/CR 

does not consist of major software changes to the onboard flight control system itself. 

The purposeful dither is a sinusoidal command to the flight control system used to excite 

the aircraft in the absence of pilot-commanded maneuvers. On piloted aircraft such as the VISTA 
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F-16 aircraft, the magnitude of the purposeful dither signal is kept to a minimum so as not to 

bother the pilot. Unfortunately, a low magnitude dither signal may not be able to yield complete 

detection and identification of all failure modes. For UAV applications, the purposeful dither 

signal magnitude can be larger in order to excite the aircraft in the absence of controller 

commands and thus enable detection of most if not all failure modes, since there is no pilot 

onboard. This condition improves the detection performance of the MMAE/FS while the aircraft 

is not maneuvering. 

The major advantage of using the MMAE/FS/CR on a UAV aircraft is that, if the aircraft 

is damaged during a mission, the MMAE/FS can detect and evaluate the damage and inform the 

controller, and the CR can compensate for the damage (assuming enough control authority is 

remaining in the other flight control surfaces), allowing the controller to return the UAV to base 

for repairs. This capability can save assets and the costs associated with them, such as the cost to 

replace a damaged UAV that had to be destroyed. Moreover, it can increase the chances of 

accomplishing missions since the controller will have better information on the status of the UAV 

and can make informed decisions whether to continue a mission with a slightly damaged UAV or 

return the UAV to base to effect repairs. 

Future advances are available in the area of MMAE/FS/CR application on UAV aircraft. 

Filter design models can be altered and new algorithms made for tailless aircraft technology. 

Providing the MMAE/FS with more sensor information, such as inertial navigation system 

information, will improve the detection and estimation capability of the MMAE/FS. The use of a 

UAV software simulation platform would greatly improve the capability to test the 

MMAE/FS/CR on UAV platforms.  These are some of the improvements that can be made to the 

MMAE/FS/CR with respect to the application to UAV aircraft. 

This section presented the advantages of implementing a MMAE/FS/CR algorithm on a 

UAV platform. This section briefly presented the implementation of the MMAE/FS/CR 

algorithm on a UAV, and the advantage of being able to increase the magnitude of the purposeful 

224




dither signal to improve the detection and estimation capability of the MMAE/FS. The ability of 

the MMAE/FS to provide more information concerning the failure status of the UAV to the 

controller and for the CR to compensate for the failures (assuming a flight control 

actuator/surface failure) to allow the UAV to continue with the mission or to return to base to 

effect repairs is also addressed in this section. Finally, the opportunities for further advancement 

in the area of applying MMAE/FS/CR to UAV aircraft are presented in this section. 

6.5 Recommendations 

In order to improve the performance of the MMAE/FS/CR, there are several 

recommendations for further research that can be exploited. These recommendations are the 

application of dynamically changing R and Q matrix values, model scheduling based on aircraft 

attitude, detection and control of multiple failures, increasing the number of sensor sources, and 

updating the simulation. 

As mentioned earlier, using dynamically changing R and Q matrices as a function of a 

commanded maneuver will allow for better detection during maneuvering flight. Research into 

an adaptive Q matrix for use within an MMAE algorithm, in order to enhance the 

distinguishability of assumed parameter values (hypothesized failure status and ε values) has been 

completed previously in both the continuous-time case and then in the discrete-time case [18,19, 

29]. An adaptive Q and R matrix has not yet been applied to this case but may result in enhanced 

failure detection capabilities and fewer false alarms during maneuvering flight. 

A second area that may be expanded is the model scheduling based on aircraft attitude. 

As the aircraft changes attitude, the linear elemental filters based on the trimmed, straight-and-

level flight condition become inaccurate, degrading the detection capability.  Filters based on the 

actual aircraft attitude using a lookup table for filters based on high bank and pitch angles, and 

linear interpolation between these and the straight-and-level flight condition, would enhance the 

detection and control characteristics of the MMAE/FS/CR. 
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A natural next area of investigation is to allow the MMAE/FS/CR to detect multiple 

failures and attempt to provide the proper control. In the current state of the software, the 

detection and control redistribution can only handle one sensor or actuator failure. The “Level 2” 

banks of filters that are used to handle dual failures have not been completely defined in the 

software as yet but the existing architecture can conceptually handle this simulation [7]. This will 

also bring up the limitation of the CR to handle dual actuator failures. The amount of control 

authority may not be able to handle a dual actuator failure. 

The fourth area is the addition of more sensors to enhance the failure detection and 

estimation. This research uses the bare minimum sensors to provide the observability to detect 

failures and to provide adequate sensor information to the flight control system given a sensor 

failure. Other sensors can be added, such as inertial navigation sensors (accurate pitch, roll, and 

yaw angles) and actuator position sensors. This will greatly enhance the capability of the 

MMAE/FS/CR to detect partial and complete actuator failures and complete sensor failures. This 

will also enhance the MMAE/FS/CR capability to create an estimated sensor output to the flight 

control system if one of the sensors has actually failed.  This will also improve the MMAE/FS 

capability to provide a reliable and accurate estimate of effectiveness to the CR, which will then 

result in better CR performance during partial actuator failures. 

The final area of improvement is the expansion of the software to a new aircraft such as 

UAVs, tailless aircraft, or other aircraft in general. The current simulation is limited to an old 

SUN computer system. New simulation tools based on current computer technology representing 

modern aircraft (with different geometries, additional actuation surfaces, more and better sensors) 

and their associated flight control systems should be used in order to move the MMAE/FS/CR 

closer to actual aircraft implementation. The use of modern computers and technology will also 

make the simulation more convenient although the current VISTA F-16 simulation ‘does the job’. 
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6.6 Chapter Summary 

This chapter provides the reader with the conclusions for the failure detection and control 

redistribution performance in this research effort. This chapter also provided discussions on 

possible improvements to the MMAE/FS/CR.  A discussion of the application of MMAE/FS/CR 

onto UAVs is also presented.  Finally, this chapter presented the possible areas of exploitation in 

order to move this research closer to actual implementation. 
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Appendix A: VISTA F-16 SRF General Information 

A.1 Variable-stability In-flight Simulation Test Aircraft (VISTA) 

The Variable-stability In-flight Simulation Test Aircraft (VISTA) is a modified F-16D 

aircraft used to simulate various flight control designs. The aircraft is currently used as a test 

aircraft at Edwards Air Force Base, California. The VISTA F-16 flight control system is 

composed of the original Block 40 Flight Control System (FCS) and the Variable Stability system 

(VSS) that allows the VISTA F-16 to act like other aircraft with respect to their control 

performance and characteristics. This can be accomplished with the F-16 aircraft since the FCS 

is based on the Fly-By-Wire design, meaning there is no physical contact between the pilot’s 

flight controls and the flight control actuators. 

Another advantage to the VISTA F-16 aircraft is the capability to test various flight 

control systems and be able to switch back to the proven Block 40 FCS if a problem is discovered 

with the FCS under test. This ensures the safety of the pilot and crew while accomplishing tests 

on new flight control designs. The VSS of the VISTA F-16 can also duplicate flight control 

failures in order to test the FCS capability of controlling a damaged aircraft. 

These advantages make the VISTA F-16 a uniquely useful test aircraft for the initial 

implementation of the Multiple Model Adaptive Estimator with Filter Spawning and with Control 

Redistribution (MMAE/FS/CR). The disadvantage of using the VISTA F-16 is the single rudder 

surface.  During a rudder failure, there is not enough control authority in the other flight controls 

to command a yaw to make up for the failed rudder. The MMAE/FS/CR works best when there 

is enough redundancy in all flight control surfaces to allow the failure in one flight control surface 

and still maintain control over the aircraft. 
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A.2 Flight Control System 

This section presents a discussion of the Flight Control System (FCS) of the VISTA F-16 

aircraft with and without the proposed implementation of the MMAE/FS/CR. The actual aircraft 

FCS contains various sensors and hardware linked together using the MIL-STD-1553B avionics 

databus. The Block 40 FCS then uses the information collected from the sensors and pilot 

commands entered through the flight control stick and rudder pedals to determine the proper 

flight control actuator commands required to accomplish the desired maneuver. These commands 

are then electronically sent to hydraulic actuators that move the flight control surfaces. The VSS 

is an addition to the original F-16D aircraft that can adjust the electronic signals going to the 

actuators in order to duplicate various types of control systems. MMAE/FS/CR does not require 

the use of the VSS so it will not be discussed in this section. 

The illustration below represents the original Block 40 FCS on an F-16D aircraft. This 

illustration does not depict all the databus and sensor connections for simplicity. 

Pilot 
Commands 

Sensors Block 40 FCS Flight Control 
Actuators 

Aircraft Aerodynamics 

Figure 77: Original F-16D Flight Control System 

In order to apply the MMAE/FS/CR, several changes had to be made to the original FCS. 

The first change is the insertion of MMAE/FS algorithm between the sensors and the Block 40 
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FCS.  This allows the MMAE/FS access to the sensor information to update the elemental filters 

within the MMAE/FS. The MMAE/FS then produces an estimate of the sensor information (i.e., 

a best reconstruction of sensor measurements as if there were no sensor failures), which is passed 

on to the Block 40 FCS. The next change to the original FCS is the insertion of the CR algorithm 

after the Block 40 FCS and before the flight control actuators. This allows the CR algorithm to 

redistribute the original Block 40 FCS commands based on the declared failure. The MMAE/FS 

is connected to the CR to provide the actuator failure declaration, as well as the estimate of 

actuator effectiveness (ε). A loop from the original Block 40 FCS outputs back to the input of the 

FCS had to be added to allow the Block 40 FCS to believe that its commands are being 

implemented even though a flight control failure may occur and the CR is redistributing the 

command signal. The new FCS with the MMAE/FS/CR implementation is shown below. 

Pilot 
Commands 

Sensors Block 40 FCS Flight Control 
Actuators 

Aircraft Aerodynamics 

MMAE/FS CR 

Figure 78: F-16D Flight Control System with MMAE/FS/CR Implementation 
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The advantage of MMAE/FS/CR is that it uses all of the original systems and does not 

require major changes in the current avionics system. The sensor data is intercepted by the 

MMAE/FS and then the estimates are sent to the original Block 40 FCS. The Block 40 FCS then 

sends the flight control actuator commands that the CR intercepts. The CR then sends the 

redistributed flight control commands to the flight control actuators. 

A.3 VISTA F-16 Simulation Rapid-prototyping Facility 

This section describes the VISTA F-16 Simulation Rapid-prototyping Facility (SRF) 

simulation tool and its operation with the MMAE/FS/CR implemented. The SRF is a nonlinear, 

six-degree-of-freedom simulation of the VISTA F-16 aircraft.  The simulation contains added 

Dryden Wind Tunnel noise and employs 4th order actuator models. Calspan and General 

Dynamics developed the simulation [11]. The Air Vehicles Laboratory at Wright-Patterson Air 

Force Base originally used the SRF simulation. The simulation tool is written in the Fortran 77 

language and is limited to operation on an older Sun Operating System. Efforts are underway to 

transport the simulation software to a more modern operating system but the original source code 

is required for some of the called libraries. Unfortunately, Calspan and General Dynamics are not 

maintaining the simulation code anymore, so the source code may be completely lost, limiting the 

simulation to run only on the Sun Operating System. 

The simulation is set up using a series of subroutines, each representing the operation of a 

particular section of the VISTA F-16 FCS. The algorithm for the simulation is shown in 

Figure79. The boxes show the functions with the actual subroutine name that is related to that 

function. The labels outside the boxes show the variable latch names that carry the data from one 

subroutine to the other. 
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Pilot Commands 
getcom.F 

Sensors 
updpool.F 

Block 40 FCS 
fcs40.F 

Flight Control 
Actuators 
atr40.F 

Aircraft Aerodynamics 

Aircraft Dynamics 
dynamics.F 

Wind Effects 
wind.F 
turb.F 

STATELAT ATRLATCH 

FCSLATCH 

INPLATCH 

Figure 79: Original VISTA F-16 SRF Algorithm 

These are the primary subroutines and their functions. The FCSLATCH variables are 

used to transfer the commands from the Block 40 FCS to the actuators. The actuator models are 

applied and the actuator commands are saved to the ATRLATCH variables. The aircraft 

dynamics subroutines use the ATRLATCH variables to propagate the aircraft states forward in 

time. The states are then stored in the STATELAT variables. The pilot commands are stored in 

the INPLATCH variables to go to the Block 40 FCS. The entire simulation is saved in the file 

named vista.F and the simulation loop above is the subroutine simulate.F. The implementation of 

MMAE/FS/CR is shown in the algorithm In Figure 80.  The same label formats are used. 
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Pilot Commands 
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Sensors 
updpool.F 

Block 40 FCS 
fcs40.F 

Flight Control 
Actuators 
atr40.F 

Aircraft Aerodynamics 

Aircraft Dynamics 
dynamics.F 

Wind Effects 
wind.F 
turb.F 

STATELAT ATRLATCH 

FCSLATCH 

INPLATCH 

MMAE/FS 
mmae.F 

Sensors 
updpool.F 

MLTLATCH 

FLTR0 
ε 

Figure 80: VISTA F-16 SRF with MMAE/FS/CR Implementation 

The FLTR0 and ε variables are the actuator failure declaration and the estimate of 

effectiveness from the MMAE/FS. The MLTLATCH are the control variables that complete the 

FCS loop. 

The simulation requires a parameter file in order to run the simulation. This parameter 

file contains all the settings (such as initial airspeed, altitude, flaps settings, and gear settings to 
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name a few) and the pilot commands for the simulation. The Transportable Applications 

Executive (TAE) software creates the parameter file. The following table shows the standard 

settings for variables used in this research effort. All the other parameter values within the TAE 

setup menus can remain at the nominal values. At anytime, the user can type HELP and the name 

of the variable to get information on the variable as well as options where applicable. 

TAE Menu Variable Description Nominal Value 

1 – Standard Parameters stoptime Simulation Duration (seconds) 5.0 

altitude Initial Altitude (ft) 10000 

mach Initial Airspeed (Mach) 0.7 

thrcntrl Throttle Control Type (Constant, 
Manual, Auto) 

“auto” 

commands(n) Pilot Commands (pstep, rstep, 
pdoublet, rdoublet) 

(null value) 

cmdmagn(n) Magnitude of Pilot Commands 
(pounds) 

(null value) 

cmdtime(n) Start Time for Each Pilot 
Command (seconds) 

(null value) 

cmddur(n) Duration of Each Command 
(seconds) 

(null value) 

mxfile Name of MATRIXx File for 
Linear Model Generation 

(null value) 

3 – Wind Parameters seed Seed for Random Number 
Generation 

1987 

Table 4: TAE Menu Options 

The altitude and Mach variables are used to set the initial simulation altitude and 

airspeed. Since linear models are used for this research effort, the thrcntrl variable should be set 

to “constant”, meaning the throttle control is not changed through the simulation. A throttle 

control setting of “auto” allows the simulation to adjust the throttle to maintain the trim airspeed 

and a setting of “manual” allows the throttle to be manually adjusted through the commands(n) 

variable. The commands(n) variable is used to insert up to five pilot commanded maneuvers into 

the simulation. The commands are pitch and roll step (pstep and rstep) and pitch and roll 
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doublets (pdoublet and rdoublet). Other pilot commands are available and can be accessed 

through the HELP menu. The cmdmagn(n) variable sets the magnitude of the commanded 

maneuver in pounds of force. The stick force limits are shown in the HELP menu. The 

cmdtime(n) variable is the commanded maneuver start time and the cmddur(n) is the duration of 

the commanded maneuver. Both of these variables are in seconds. 

The mxfile variable is used to generate the MATRIXx file for use in generating the linear 

filters based on the failure hypotheses. The MATRIXx file should be saved as srfdat.m. This file 

contains the linear model parameter values, including all the time conditions, based on the initial 

airspeed and altitude settings above. The VISTA simulation must be run from the TAE software 

in order to generate the srfdat.m file. The final setting in the TAE software relevant to this 

research is the seed variable. The seed variable is used in the zero-order Dryden noise applied to 

the simulation. The turbulence routines used by the original VISTA software are not used. The 

updated Dryden noise can be removed through a setting in the FLAGS.DAT file. The seed 

variable defines which random sequence to use in the simulation. This also allows random 

sequences to be repeated in the case of various Monte Carlo analyses. 
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